Theory Manual
GE

Written by: The SoilVision Systems Ltd. Team

Last Updated: Friday, May 10, 2019
Software License
The software described in this manual is furnished under a license agreement. The software may be used or copied only in accordance with the terms of the agreement.

Software Support
Support for the software is furnished under the terms of a support agreement.

Copyright
Information contained within this Theory Manual is copyrighted and all rights are reserved by SoilVision Systems Ltd. The SVHEAT software is a proprietary product and trade secret of SoilVision Systems. The Theory Manual may be reproduced or copied in whole or in part by the software licensee for use with running the software. The Theory Manual may not be reproduced or copied in any form or by any means for the purpose of selling the copies.

Disclaimer of Warranty
SoilVision Systems Ltd. reserves the right to make periodic modifications of this product without obligation to notify any person of such revision. SoilVision Systems Ltd. does not guarantee, warrant, or make any representation regarding the use of, or the results of, the programs in terms of correctness, accuracy, reliability, currentness, or otherwise; the user is expected to make the final evaluation in the context of his (her) own models.

Trademarks
© 2015 - 2019 SoilVision Systems Ltd. All rights reserved. SoilVision.com, SoilVision logo, and SVSLOPE are registered trademarks of SoilVision Systems Ltd. SVOFFICE, SVOFFICE 5/GE, SVOFFICE 5/GT, SVOFFICE 5/WR, SVSOILS, SVFLUX, SVSOLID, SVCHEM, SVAIR, SVHEAT and SVDESIGNER are trademarks of SoilVision Systems Ltd. FlexPDE is a registered trademark of PDE Solutions Inc. FEHM is used under license from Los Alamos National Laboratories.
Table of Contents

1 INTRODUCTION .. 5

2 HEAT TRANSFER THEORY ... 6

 2.1 HEAT FLOW GOVERNING EQUATION ... 6
 2.1.1 Transient-State Heat Flow without Considering Thermal Convection 8
 2.1.2 Steady-State Heat Flow without Considering Thermal Convection 9
 2.1.3 Transient-State Heat Flow Including Thermal Convection 10
 2.1.4 Steady-State Heat Flow Including Thermal Convection 11

3 COUPLED EQUATIONS OF MOISTURE FLOW, AIR FLOW AND HEAT FLOW . 13

 3.1 BASIC COUPLED EQUATIONS GOVERNING MOISTURE FLOW, AIR FLOW, AND HEAT FLOW .. 13
 3.1.1 Basic Equations for the Flow of Moisture, Including Water and Vapor 13
 3.1.1.1 Water flow .. 13
 3.1.1.2 Vapor flow ... 15
 3.1.2 Basic Equations for Heat Flow ... 17
 3.1.3 Basic Equations for Air Flow ... 20
 3.1.4 Determination of Ice and Hydraulic Conductivity Reduction 22
 3.2 COUPLED MODEL OF MOISTURE AND HEAT FLOW .. 23
 3.2.1 Transient-State Coupled Model for Moisture and Heat Flow 23
 3.2.2 Steady-State Coupled Model of Moisture and Heat Flow 27
 3.3 COUPLED MODEL FOR HEAT AND AIR FLOW .. 30
 3.3.1 Transient-State Coupled Model of Heat Flow and Air Flow 30
 3.3.2 Steady-State Coupled Model of Heat Flow and Air Flow 32
 3.3.3 Heat Flow and Air Flow due to Natural Convection ... 33
 3.4 FULLY COUPLED MODEL OF MOISTURE, AIR, AND HEAT FLOW 35

4 MATERIAL THERMAL PROPERTIES ... 43

 4.1 THERMAL CONDUCTIVITY CURVE ... 43
 4.1.1 Johansen Approach (1973) .. 43
 4.1.2 Improved Johansen – Lu et al., (2007) .. 49
 4.1.3 De Vries Approach (1963) ... 51
 4.1.4 Côté and Konrad (2005) .. 53
 4.1.5 Comparison of Thermal Conductivity Calculated with Johansen, Lu et al., and De Vries Approach ... 55
 4.1.6 Measured by Experimental Data .. 57
 4.1.7 Estimated by Empirical Expression ... 62
 4.1.8 Thermal Conductivity of Snow ... 62
 4.2 VOLUMETRIC HEAT CAPACITY ... 63
 4.2.1 Constant Formulation ... 63
 4.2.2 Jame-Newman Formulation .. 65
 4.2.3 Curve Comparison ... 65
 4.3 SOIL FREEZING CHARACTERISTIC CURVE (SFCC) .. 66
 4.3.1 Estimated SFCC with SWCC ... 67
 4.3.2 Estimated SFCC by Empirical Expression ... 67
 4.3.3 Exponential Expression of SFCC .. 70
1 INTRODUCTION

Conductive heat flow problems in geotechnical and geo-environmental engineering involve the solution of a partial differential equation referred to as a PDE. The PDE must be solved for all “finite elements” which when combined form a “continuum” (or the geometry of the problem). The theory of heat flow expressed in mathematical form embraces the physical behavior of the material (e.g., soil) and the conservative laws of physics (i.e., conservation of energy). The physical behavior of many materials, (particularly unsaturated soils), is non-linear and as a consequence, the PDE becomes non-linear in character. It is well-known that the solution of non-linear PDEs can present a challenge to the numerical modeler.

The purpose of the theory manual is to provide the user with details regarding the theoretical formulation of the PDE as well as the numerical method used in the solution. The intent of the theory manual is not to provide an exhaustive summary of all theories associated with heat flow. Rather, the intent is to clearly describe details of the theory used in the SVHEAT software.

The SoilVision finite element software packages utilize the FlexPDE generic finite element solver to solve the partial differential equation for heat flow. The FlexPDE solver algorithm has implemented cutting-edge numerical solution techniques that can accommodate linear and highly non-linear PDEs. The solution technique utilizes automatic mathematically designed mesh generation as well as automatic mesh refinement. The application of these advanced numerical techniques is particularly valuable in solving highly non-linear and complex problems. Most commonly it is the unsaturated soil portion of the soil continuum that brings in non-linear soil behavior. The advanced FlexPDE solver makes it possible to obtain converged and accurate solutions for many problems that were previously unsolvable.

The primary attributes of the SoilVision solution process are as follows:

- Fully automatic mesh generation.
- Fully automatic mesh refinement based on any model variable.
- Integrated climatic calculations.
- Fully implicit approach in the solver, which provides for a robust solution of difficult models with convergence issues.
- Energy-balance tracking.
- Axisymmetric and plan analysis formulations.
- 3, 6, or 9-noded triangles as elements for 2D analysis and 4, 10, or 20-noded tetrahedrons in 3D elements.
- Adaptive time-stepping with automatic generation and control of time steps.
- Newton-Raphson convergence iteration schemes.
- Use matrix preconditioning in conjugate-gradient solutions. The default preconditioner is the diagonal-block inverse matrix.
2 HEAT TRANSFER THEORY

SVHEAT is formulated to mathematically model the movement of heat in a material. SVHEAT is capable of modeling heat transfer by the conduction or convection processes. Modeling of convection may be accomplished when coupled with seepage (SVFLUX) and can accommodate saturated and unsaturated materials. The software is also formulated to simulate the freezing and thawing phase change between ice and water. The following manual describes the formulation used by SVHEAT to model heat transfer in materials.

2.1 HEAT FLOW GOVERNING EQUATION

The equation governing heat flow can be generally written as follows (Harlan 1973, Jame 1977, Flerchinger and Saxton 1989, Neman 1995):

\[
\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) - C_w q_w \frac{\partial T}{\partial x} = C \frac{\partial T}{\partial t} - L_f \rho_i \frac{\partial \theta_i}{\partial t}
\]

where:
\(\lambda \) = thermal conductivity, \(J/(s-m^{\circ}C) \),
\(C \) = volumetric heat capacity of soil, \(J/(m^3-\circ C) \),
\(C_w \) = volumetric heat capacity of water, \(J/(m^3-\circ C) \),
\(q_w \) = water flow flux (Darcian velocity), \(m/s \),
\(L_f \) = volumetric latent heat of fusion of water \(3.34 \times 10^8 J/m^3 \),
\(\rho_i \) = ice density, \(kg/m^3 \),
\(\rho_w \) = water density, \(kg/m^3 \),
\(\theta_i \) = volumetric ice content, \(m^3/m^3 \),
\(T \) = temperature, \(\circ C \),
\(t \) = time, \(s \), and
\(x \) = coordinate, \(m \).

On the left side of equation [1], the first term represents the heat flow driven by thermal conduction; the second term is the heat flow due to thermal convection. On the right side of equation [1], the term of \(L_f \frac{\partial \theta_i}{\partial t} \) is the heat release or absorption caused by phase change of water freezing, and the term of \(C \frac{\partial T}{\partial t} \) is the heat storage in the system.

There are two dependent variables of \(T \) and \(\theta_i \) in equation [1]. The ice content is associated with the soil temperature and water content. At any time the total volumetric water content is expressed as follows.

\[
\theta = \theta_u + \frac{\rho_i \theta_i}{\rho_w}
\]

where:
\(\theta \) = volumetric water content, \(m^3/m^3 \),
\(\theta_u \) = volumetric unfrozen water content at a given negative temperature,
\[\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) - C_w q_w \frac{\partial T}{\partial t} = \left(C + L_f m_2^1 \right) \frac{\partial T}{\partial t} \]

\[C_\rho = C + L_f m_2^1 \]

\[m_2^1 = \frac{\partial \theta_u}{\partial T} \quad \text{if} \quad T_{ef} < T \geq T_{ep} \]

\[m_2^1 = 0 \quad \text{otherwise} \]

where:

- \(T \) = temperature, \(^\circ\)C, and
- \(t \) = time, s.
- \(\lambda \) = Thermal conductivity, J/(s-m-\(^\circ\)C),
- \(C_w \) = volumetric heat capacity of water, J/(m\(^3\)-\(^\circ\)C),
- \(C \) = volumetric heat capacity of soil, J/(m\(^3\)-\(^\circ\)C),
- \(q_w \) = water flow flux (Darcian velocity), m/s,
- \(L_f \) = volumetric latent heat of fusion of water \(3.34 \times 10^8 \) J/m\(^3\),
- \(\rho_w \) = water density, kg/m\(^3\),
- \(m_2^1 \) = the rate of change of unfrozen water content with temperature (i.e., the slope of soil freezing characteristic curve), m\(^3\)/(m\(^3\)-\(^\circ\)C),
- \(T_{ef} \) = Soil freezing point, or sometime it is referred as the temperature of fusion (liquids), \(^\circ\)C,
- \(T_{ep} \) = Soil temperature at the end of the freezing phase change, or sometime it is defined as the temperature of solidification (solidus), \(^\circ\)C,
- \(C_\rho \) = apparent volumetric heat capacity for heat storage, J/(m\(^3\)-\(^\circ\)C).

The term of \(\rho_1 L_f m_2^1 \) in equation [3] represents the energy release or absorption due to the phase change of soil freezing. Care must be taken in use of \(m_2^1 \). For unsaturated soil, if the soil water content at the temperature above the soil freezing point is less than the unfrozen soil water content at the given soil negative temperature, no phase change happens because the soil is too dry to freeze. For example, suppose soil sample1 and soil sample2 have the same soil properties of
SoilVision Systems Ltd.

Heat Transfer Theory

8 of 100

SFCC, but the initial volumetric water content for soil sample 1 is 0.45 \(m^3/m^3 \) and for soil sample 2 is 0.15 \(m^3/m^3 \). The phase change starts for soil sample 1 at the soil temperature below –0.05 °C, but the phase change does not happen to the soil sample 2 until the soil temperature drops down to –0.2 °C, as shown in Figure 1.

![Graph Illustrating Phase Change](image)

Figure 1 Illustrative phase changing at different initial water content

Thermal conductivity, heat capacity, and the soil freezing characteristic curve are the most important properties of a material. Please see the Material Properties section of this document for how to calculate, determine, or estimate these material thermal properties.

Equation [1] is the general formulation of heat transfer including the mechanism of thermal conduction, convection and phase change of water freezing. In geotechnical engineering such as soil cover, the thermal convection with water flow can be neglected. For materials such as wood, iron and steel, plastics, etc., used in model domain, the phase change is not needed to be considered (i.e., \(m^2 = 0 \)). The following sections describe the different applications implemented in SVHEAT package.

2.1.1 Transient-State Heat Flow without Considering Thermal Convection

Heat flow due to the convection of moisture flow in a model domain is usually two or more orders of magnitude less than conductive heat flow in all but the coarsest of soils (Pentland, 2000). The conductive heat flow is generally the greatest significance of heat transfer in geotechnical engineering. Consequently, by the default, the thermal convection flow is not included when a model is created with SVHEAT. In this case the governing equation [3] can be rewritten as follows:

- **1D Horizontal**

 \[
 \frac{\partial}{\partial x} \left(\lambda x \frac{\partial T}{\partial x} \right) = \left(C + L_f m_f^2 \right) \frac{\partial T}{\partial t}
 \]

- **1D Vertical**
\[
\frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) = \left(C + L_f m_f^2 \right) \frac{\partial T}{\partial t} \tag{7}
\]

- **2D or Plane**

\[
\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) = \left(C + L_f m_f^2 \right) \frac{\partial T}{\partial t} \tag{8}
\]

- **Axis-Symmetric**

\[
\frac{\partial}{\partial r} \left(\lambda_r \frac{\partial T}{\partial r} \right) + \frac{\lambda_r}{r} \frac{\partial T}{\partial r} + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) = \left(C + L_f m_f^2 \right) \frac{\partial T}{\partial t} \tag{9}
\]

- **3D**

\[
\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) = \left(C + L_f m_f^2 \right) \frac{\partial T}{\partial t} \tag{10}
\]

where:
- \(\lambda_x, \lambda_y, \lambda_z \) = Thermal conductivity in \(x, y, z \) direction of Cartesian coordinate, or \(r \)-direction of cylindrical coordinate, \(J/(s\cdot m\cdot ^\circ C) \),
- \(C \) = volumetric heat capacity of soil, \(J/(m\cdot ^\circ C) \),
- \(L_f \) = volumetric latent heat of fusion of water \(3.34 \times 10^8 J/m^3 \),
- \(m_f \) = the rate of change in unfrozen water content with temperature (i.e., the slope of soil freezing characteristic curve), \(m^3/(m^3\cdot ^\circ C) \),
- \(T \) = temperature, \(^\circ C \),
- \(t \) = time, \(s \),
- \(x, y, z \) = Cartesian coordinate, \(m \), and
- \(r \) = horizontal direction in cylindrical coordinate.

The thermal conductivity, heat capacity, and SFCC can be determined using the measured data, or calculated with different approaches. Please see Thermal Material Properties section for details.

2.1.2 Steady-State Heat Flow without Considering Thermal Convection

In steady state the temperature does not change with time. The heat flow equations are simplified as follows:

- **1D Horizontal**

\[
\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) = 0 \tag{11}
\]

- **1D Vertical**

\[
\frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) = 0 \tag{12}
\]

- **2D or Plane**

\[
\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) = 0 \tag{13}
\]

- **Axis-Symmetric**
\[\frac{\partial}{\partial r} \left(\lambda_r \frac{\partial T}{\partial r} \right) + \frac{\lambda_r}{r} \frac{\partial T}{\partial r} + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) = 0 \] \[\text{[14]} \]

- **3D**

\[\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) = 0 \]

\[\text{[15]} \]

where:

- \(\lambda_x, \lambda_y, \lambda_z \) = Thermal conductivity in x, y, z direction of Cartesian coordinate, or r-direction of cylindrical coordinate, J/(s-m-°C),
- \(T \) = temperature, °C,
- \(t \) = time, s,
- \(x, y, z \) = Cartesian coordinate, m, and
- \(r \) = horizontal direction in cylindrical coordinate.

2.1.3 Transient-State Heat Flow Including Thermal Convection

To include the thermal convection of water flow and airflow, select the “Convection” option in SVHEAT.

- **1D Horizontal**

\[\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) - \left(C_w q_x^w + C_a q_x^a \right) \frac{\partial T}{\partial x} = \left(C + L_f m_x^i \right) \frac{\partial T}{\partial t} \]

\[\text{[16]} \]

- **1D Vertical**

\[\frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_w q_y^w + C_a q_y^a \right) \frac{\partial T}{\partial y} = \left(C + L_f m_y^i \right) \frac{\partial T}{\partial t} \]

\[\text{[17]} \]

- **2D or Plane**

\[\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_w q_x^w + C_a q_x^a \right) \frac{\partial T}{\partial x} - \left(C_a q_x^w + C_a q_y^a \right) \frac{\partial T}{\partial y} = \left(C + L_f m_y^i \right) \frac{\partial T}{\partial t} \]

\[\text{[18]} \]

- **Axis-Symmetric**

\[\frac{\partial}{\partial r} \left(\lambda_r \frac{\partial T}{\partial r} \right) + \frac{\lambda_r}{r} \frac{\partial T}{\partial r} + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) - \left(C_w q_r^w + C_a q_r^a \right) \frac{\partial T}{\partial r} - \left(C_w q_z^w + C_a q_z^a \right) \frac{\partial T}{\partial z} = \left(C + L_f m_y^i \right) \frac{\partial T}{\partial t} \]

\[\text{[19]} \]

- **3D**

\[\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) - \left(C_w q_x^w + C_a q_x^a \right) \frac{\partial T}{\partial x} - \left(C_w q_y^w + C_a q_y^a \right) \frac{\partial T}{\partial y} - \left(C_w q_z^w + C_a q_z^a \right) \frac{\partial T}{\partial z} = \left(C + L_f m_y^i \right) \frac{\partial T}{\partial t} \]

\[\text{[20]} \]
where:
\[\lambda_x, \lambda_y, \lambda_z, \lambda_r = \text{Thermal conductivity in x, y, z direction of Cartesian coordinates, or r-direction of cylindrical coordinates, J/(s-m-°C)}, \]
\[C_w = \text{volumetric heat capacity of water, J/(m}^3\text{-°C)}, \]
\[C_a = \text{volumetric heat capacity of air, J/(m}^3\text{-°C)}, \]
\[C = \text{volumetric heat capacity of soil, J/(m}^3\text{-°C)}, \]
\[q_x^w, q_y^w, q_z^w, q_r^w = \text{water flow velocity (Darcian velocity) in x, y, z-direction of Cartesian coordinates, or r-direction of cylindrical coordinates, m/s,} \]
\[q_x^a, q_y^a, q_z^a, q_r^a = \text{air flow velocity (Darcian velocity) in x, y, z-direction of Cartesian coordinates, or r-direction of cylindrical coordinates, m/s,} \]
\[L_f = \text{volumetric latent heat of fusion of water } 3.34 \times 10^8 \text{J/m}^3, \]
\[m_2' = \text{the rate of change of unfrozen water content with temperature, i.e., the slope of soil freezing characteristic curve, m}^3/(m}\text{-°C)}, \]
\[T = \text{temperature, °C}, \]
\[t = \text{time, s.} \]
\[x, y, z = \text{Cartesian coordinates, m, and} \]
\[r = \text{horizontal direction in cylindrical coordinates.} \]

2.1.4 Steady-State Heat Flow Including Thermal Convection
For steady-state conditions the partial differential equation that describes heat flow is as follows:

- **1D Horizontal**
 \[
 \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) - (C_w q_x^w + C_a q_x^a) \frac{\partial T}{\partial x} = 0 \quad \text{[21]} \]

- **1D Vertical**
 \[
 \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - (C_w q_y^w + C_a q_y^a) \frac{\partial T}{\partial y} = 0 \quad \text{[22]} \]

- **2D or Plane**
 \[
 \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - (C_w q_x^w + C_a q_x^a) \frac{\partial T}{\partial x} - (C_w q_y^w + C_a q_y^a) \frac{\partial T}{\partial y} = 0 \quad \text{[23]} \]

- **Axis-Symmetric**
 \[
 \frac{\partial}{\partial r} \left(\lambda_r \frac{\partial T}{\partial r} \right) + \frac{\lambda_r}{r} \frac{\partial T}{\partial r} + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) - (C_w q_r^w + C_a q_r^a) \frac{\partial T}{\partial r} - (C_w q_z^w + C_a q_z^a) \frac{\partial T}{\partial z} = 0 \quad \text{[24]} \]

- **3D**
 \[
 \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) - (C_w q_x^w + C_a q_x^a) \frac{\partial T}{\partial x} - (C_w q_y^w + C_a q_y^a) \frac{\partial T}{\partial y} - (C_w q_z^w + C_a q_z^a) \frac{\partial T}{\partial z} = 0 \quad \text{[25]} \]

where:
\(\lambda_x, \lambda_y, \lambda_z, \lambda_r\) = Thermal conductivity in x, y, z direction of Cartesian coordinates, or r-direction of cylindrical coordinates, \(J/(s\cdot m\cdot ^\circ C)\),

\(C_w\) = volumetric heat capacity of water, \(J/(m^3\cdot ^\circ C)\),

\(C_a\) = volumetric heat capacity of air, \(J/(m^3\cdot ^\circ C)\),

\(q_x\), \(q_y\), \(q_z\), \(q_r\) = moisture flow flux (Darcian velocity), \(m/s\),

\(q_x^a, q_y^a, q_z^a, q_r^a\) = air flow velocity (Darcian velocity) in x, y, z-direction of Cartesian coordinates, or r-direction of cylindrical coordinates, \(m/s\), and

\(T\) = temperature, \(^\circ C\).
3 Coupled Equations of Moisture Flow, Air Flow and Heat Flow

This section discusses the coupled equation governing moisture flow, air flow and heat flow. Depending on different applications, three cases are considered:

- Heat flow coupled with moisture flow,
- Heat flow coupled with air flow,
- Heat flow coupled with moisture, and air flow.

3.1 Basic Coupled Equations Governing Moisture Flow, Air Flow, and Heat Flow

3.1.1 Basic Equations for the Flow of Moisture, Including Water and Vapor

The following assumptions and considerations are made:

- The soil moisture flow obeys Darcy’s law,
- Moisture evaporation is included only when a climate boundary condition applied,
- The convection between moisture and heat flow is considered,
- Hydraulic conductivity reduction in frozen soil regime is considered. The same approaches are used to calculate hydraulic conductivity as the function of soil suction as described in SVFLUX Theory Manual, but soils suction in the freezing and frozen regime is determined by Clapeyron equation.

The equation governing moisture flow, including liquid flow, vapor flow, and freezing is described as follows:

3.1.1.1 Water flow

Volumetric moisture content (including water, vapor, and ice) can be generally expressed as

\[
\theta = \theta_l + \theta_v + \delta(T_{ef} - T) \frac{\rho_i \theta_i}{\rho_w} \tag{26}
\]

where:

- \(\theta \) = total volumetric water content, \(m^3/m^3 \),
- \(\theta_l \) = liquid water content, \(m^3/m^3 \),
- \(\theta_v \) = water vapor content, \(m^3/m^3 \),
- \(\theta \) = ice content, \(m^3/m^3 \),
- \(\rho_i \) = ice density, \(kg/m^3 \),
- \(\rho_w \) = water density, \(kg/m^3 \),
δ(x) = a unit function having the value of δ(x) = 1 if x > 0, δ(x) = 0 else.

\(T_{sf} \) = temperature at soil freezing point, °C, and

\(T \) = soil temperature, °C.

Water flow due to the hydraulic head gradient and the temperature gradient can be generally obtained by the modified Darcy law:

\[
q_L = \left(\frac{k_w \frac{\partial u_w}{\partial z} + k_w + k_{LT} \frac{\partial T}{\partial z}}{\gamma_w} \right) \tag{27}
\]

\[k_{LT} = \frac{k_w \frac{\partial \Psi(T)}{\partial T}}{\gamma_w} = m_2^\psi \frac{k_w}{\gamma_w} \tag{28} \]

\[m_2^\psi = \frac{\partial \Psi(T)}{\partial T} \tag{29} \]

where:

\(k_w \) = hydraulic conductivity due to water head, m/s,

\(k_{LT} \) = hydraulic conductivity introduced by temperature gradient, m²/s·°C,

\(\gamma_w \) = unit weight of water, kN/m³,

\(\psi(T) \) = a relation of matric suction to the temperature,

\(m_2^\psi \) = slope of the relation of matric suction to the soil temperature, kPa/°C, and

\(T \) = Temperature, °C.

For the unfrozen soil, the following relationship between matric suction and temperature is used (Milly, 1984; Heitman, et al., 2008):

\[
\Psi = \Psi(T_0)\exp[-\alpha(T - T_0)] \tag{30}
\]

\[m_2^\psi = -\alpha \Psi(T_0)\exp[-\alpha(T - T_0)] \tag{31} \]

where:

\(\psi(T_0) \) = matric suction at a reference temperature, kPa, which is determined by soil water characteristic curve (SWCC),

\(\alpha = 2.09 \times 10^{-3}, \; 1/°C \),

Noborio et al., (1996b) used the following expression for \(k_{LT} \), as given

\[
m_2^\psi = u_w G_{WT} \frac{1}{\gamma_0} \frac{\partial \gamma}{\partial T} = -u_w G_{WT} (1.98 \times 10^{-3} + 6.62 \times 10^{-6} T) \tag{32}
\]

\[\gamma = 75.6 - 0.1425T - 2.38 \times 10^{-4}T^2 \tag{33} \]

where:

\(G_{WT} \) = gain factor, a dimensionless factor,

\(\gamma_0 = 71.89, \; g/s^2 \), and

\(\gamma \) = surface tension of soil water, g/s².
For the frozen soil, the Clapeyron equation may be used to obtain the matric suction as the function of temperature (Daanen et al., 2007):

$$\Psi = \frac{\gamma_w L_f T}{\rho_w g T_0} = m_2^p T$$ \[34\]

$$m_2^p = \frac{\gamma_w L_f}{273.15 g \rho_w}$$ \[35\]

NOTE:

1. The unit of variable T in $[34]$ is $^\circ$C and T_0 is 273.15 K

2. It is not very clear for the mechanics of liquid water flow caused by a temperature gradient. SVHEAT may not fully support this feature in the current version.

3.1.1.2 Vapor flow

Vapor flow due to the vapor concentration in the pore air is given according to Fick’s law (Fredlund and Gitirana 2005, Saito et al., 2006, and Heitman et al., 2008):

$$q_v = -D_v \beta \frac{\partial \theta_v}{\partial z} = -\frac{D_v \beta \theta_a}{\rho_w} \left(\frac{\partial \rho_v}{\partial \Psi} \frac{\partial \Psi}{\partial z} + \frac{\partial \rho_v}{\partial T} \frac{\partial T}{\partial z} \right)$$ \[36\]

$$D_v = 2.29 \times 10^{-4} \left(1 + \frac{T}{273.15}\right)^{1.75}$$ \[37\]

$$\beta = \left(\theta_a\right)^{2/3} = \left(n - \theta_L\right)^{2/3}$$ \[38\]

$$\theta_v = \frac{\theta_a \rho_v}{\rho_w}$$ \[39\]

$$\rho_v = \rho_{sv0} h_r$$ \[40\]

$$h_r = e^{-g_{0w} \Psi/\gamma_w R (273.15 + T)}$$ \[41\]

$$\psi = (u_a - u_w) + \pi$$ \[42\]

where:

q_v = vapor flow rate in soil pore air, m/s,

D_v = molecular diffusivity of vapor in soil pore air, m^2/s,

β = soil tortuosity of a dimensionless factor,

θ_a = volumetric air content, m^3/m^3,

θ_v = volumetric vapor content, m^3/m^3,

ρ_w = water density, kg/m^3,

ρ_v = vapor density, kg/m^3,

ρ_{sv0} = saturation vapor density that is dependent on temperature, kg/m^3,

h_r = relative humidity,
\(\gamma_w \) = unit weight of water, kN/m\(^3\),
\(\Psi \) = total suction, kPa,
\(u_a \) = pore air pressure, kPa,
\(u_w \) = pore water pressure, kPa,
\(\pi \) = osmotic suction, kPa,
\(\omega_v \) = molecular weight of vapor, 0.018016 kg/mol,
\(R \) = universal gas constant 8.3144 J/mol-K, and
\(T \) = soil temperature, °C.

Using the equation [40], [41], and expanding the equation [36] gives

\[
q_v = -D_v \beta \frac{\partial \theta_v}{\partial z} = -D_v \beta \frac{\partial h_r}{\partial \Psi} \frac{\partial \Psi}{\partial z} + \left(h_r \frac{\partial \rho_{sv0}}{\partial T} + \rho_{sv0} \frac{\partial h_r}{\partial T} \right) \frac{\partial T}{\partial z}
\]

[43]

If water vapor is considered as an ideal gas (Fredlund and Gitirana 2005), the saturated vapor density is given by

\[
\rho_{sv0} = \frac{C_u \omega_v u_{sv0}}{R(273.15+T)}
\]

[44]

\[
u_{sv0} = 0.6183580754 + 0.041142732 T + 0.0017217473 T^2
\]

\[+ 0.0000174108 T^3 + 0.0000003985 T^4 + 0.000000022 T^5
\]

[45]

where:

\(u_{sv0} \) = saturated vapor pressure, kPa,
\(C_u \) = unit conversion coefficient, \(C_u = 1000 \) for metric unit, and \(C_u = 1 \) for imperial unit.

Saito et al., (2006) and Heitman et al., (2008) use the different expressions to describe the saturation vapor density, but Figure 2 shows that equation [44] has a good agreement with the experimental data from the online compared with other approaches. The experimental data is from the website: http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/relhum.html#c3.

![Figure 2](image-url) Comparison of different approaches to calculate the saturation vapor density.
Insertion of the equation \[44 \] into the equation \[43 \] results in the vapor flow rate:

\[
q_v = \left(\frac{k_{vh}}{\gamma_w} \frac{\partial u_w}{\partial z} + k_{vT} \frac{\partial T}{\partial z} - \frac{k_{vh}}{\gamma_w} \frac{\partial u_a}{\partial z} \right) \tag{46}
\]

\[
k_{vh} = \frac{\beta \theta_u g D_\ell \omega_v \rho_{sv0} h_r}{\rho_w R(273.15 + T)} \tag{47}
\]

\[
k_{vT} = \frac{k_{vh}}{\gamma_w} \left[\frac{\rho_w}{\rho_{sv0}} \left(\frac{\partial u_{sv0}}{\partial T} - \frac{u_{sv0}}{(273.15 + T)} \right) + \frac{u_a - u_w}{(273.15 + T)} \right] \tag{48}
\]

The total moisture (water and vapor) flow rate becomes

\[
q_w = q_L + q_v = \left[\frac{k_w + k_{vh}}{\gamma_w} \frac{\partial u_w}{\partial z} + k_w (k_{LT} + k_{vT}) \frac{\partial T}{\partial z} - \frac{k_{vh}}{\gamma_w} \frac{\partial u_a}{\partial z} \right] \tag{49}
\]

Based on the mass conservation, the equation governing moisture flow can be written as the format like

\[
\frac{\partial}{\partial z} \left[k_{11} \frac{\partial u_w}{\partial z} + k_{12} \frac{\partial T}{\partial z} + k_{13} \frac{\partial u_a}{\partial z} + k_w \right] = \frac{\partial \theta_u}{\partial t} + \frac{\rho_i}{\rho_w} \frac{\partial \theta_i}{\partial t} \tag{50}
\]

\[
k_{11} = \frac{k_w + k_{vh}}{\gamma_w}, \quad k_{12} = k_{LT} + k_{vT}, \quad k_{13} = -\frac{k_{vh}}{\gamma_w} \tag{51}
\]

where:

- \(k_w \) = hydraulic conductivity, m/s,
- \(k_{vh} \) = water vapor conductivity by diffusion within the air phase, m/s,
- \(k_{vT} \) = water vapor conductivity due to temperature gradient, \(m^2/s\cdot ^\circ C \),
- \(k_{LT} \) = water conductivity introduced by temperature gradient, \(m^2/s\cdot ^\circ C \),
- \(T \) = temperature, \(^\circ C \),
- \(u_w \) = pore water pressure, kPa,
- \(u_a \) = pore air pressure, kPa,
- \(\gamma_w \) = unit weight of water, kN/m\(^3\),
- \(\rho_w \) = water density, kg/m\(^3\),
- \(\theta_u \) = unfrozen volumetric water content, including liquid and vapor, \(m^3/m^3 \),
- \(\theta_i \) = volumetric ice content, \(m^3/m^3 \),
- \(\rho_i \) = ice density, kg/m\(^3\),
- \(z \) = elevation, m, and
- \(t \) = time, s.

3.1.2 Basic Equations for Heat Flow

The energy conservation of heat flow that contains the thermal conduction, convection, water vapor and freezing phase change can be generally expressed as
\[
\frac{\partial}{\partial z} \left[\lambda \frac{\partial T}{\partial z} - L_v q_v - (C_w \theta_L + C_v \theta_v + C_a \theta_a) \right] = \rho_i \frac{\partial \theta_i}{\partial t} + L_f \frac{\partial \theta_f}{\partial t} - L_v q_v + C \frac{\partial T}{\partial t} + L_v \frac{\partial \theta_v}{\partial t} - L_f \frac{\partial \theta_f}{\partial t} \tag{52}
\]

\[C = C_s \theta_s + C_w \theta_L + C_v \theta_v + C_i \theta_i + C_a \theta_a \tag{53}\]

where:

- \(\lambda\) = thermal conductivity, \(J/(s\cdot m\cdot ^\circ C)\) or \(w/m\cdot ^\circ C\),
- \(T\) = temperature, \(^\circ C\),
- \(L_v\) = volumetric latent heat of water vaporization, \(2.5 \times 10^9 \ J/m^3\), if \(T > T_{ef}\), otherwise, \(L_v = 0\) otherwise.
- \(L_f\) = volumetric latent heat of fusion of water \(3.34 \times 10^8 \ J/m^3\), if \(T > T_{ef}\) or \(T < T_{ep}\), then \(L_f = 0\),
- \(T_{ef}\) = temperature at soil freezing point, or liquidus temperature, \(^\circ C\),
- \(T_{ep}\) = temperature at the end of ice phase, or solidus temperature, \(^\circ C\),
- \(q_v\) = water flow velocity (Darcian velocity) (i.e., equation [27]), \(m/s\),
- \(q_v\) = water vapor flow velocity (Darcian velocity) (i.e., equation [46]), \(m/s\),
- \(q_s\) = air flow velocity (Darcian velocity) (i.e., equation [66]), \(m/s\),
- \(C\) = Heat capacity of a material,
- \(C_s\) = volumetric heat capacity of solid phase of the soil, \(J/m^3\cdot ^\circ C\),
- \(C_w\) = volumetric heat capacity of liquid phase of the soil, \(J/m^3\cdot ^\circ C\),
- \(C_v\) = volumetric heat capacity of vapour phase of the soil, \(J/m^3\cdot ^\circ C\),
- \(C_i\) = volumetric heat capacity of ice phase of the soil, \(J/m^3\cdot ^\circ C\),
- \(C_a\) = volumetric heat capacity of dry air phase of the soil, \(J/m^3\cdot ^\circ C\),
- \(\theta_s\) = volumetric solid component content of the soil, \(m^3/m^3\),
- \(\theta_w\) = volumetric water content of the soil, \(m^3/m^3\),
- \(\theta_v\) = volumetric water vapor content of the soil, (i.e., equation [53]) \(m^3/m^3\),
- \(\theta_i\) = volumetric ice content of the soil, \(m^3/m^3\), and
- \(\theta_a\) = volumetric dry air content of the soil, \(m^3/m^3\).

On the left side of the equation [52], the first term is the sensible heat by conduction, the second term is the latent heat of vapor, and the third term is the sensible heat by convection due to the water flow, vapor flow and dry air flow. The right side of the equation represents the heat storage with the soil heat capacity, vapor, and heat fusion in ice phase change.
Inserting vapor flow rate of equation [46] into the term of $L_v q_v$ in the equation [53], and get the following equation:

$$\frac{\partial}{\partial z} \left[\left(\lambda + L_v k_{VT} \right) \frac{\partial T}{\partial z} + L_v k_{vh} \frac{\partial u_w}{\partial z} - L_v k_{vh} \frac{\partial u_a}{\partial z} \right] - (C_w q_{L} + C_v q_v + C_a q_a) \frac{\partial T}{\partial z}$$

$$= C \frac{\partial T}{\partial t} + L_v \frac{\partial \theta_v}{\partial t} - L_f \frac{\rho_i}{\rho_w} \frac{\partial \theta_i}{\partial t}$$

Equation [50] and equation [54] are coupled through the ice content θ_i and vapour. After the term of $\frac{\rho_i}{\rho_w} \frac{\partial \theta_i}{\partial t}$ in the equation [50] is inserted into the equation [54], the following equation is used for the heat flow governing equation coupled with moisture and air flow:

$$\frac{\partial}{\partial z} \left[k_{21} \frac{\partial u_w}{\partial z} + k_{22} \frac{\partial T}{\partial z} + k_{23} \frac{\partial u_a}{\partial z} + L_f k_w \right] - (C_w q_{L} + C_v q_v + C_a q_a) \frac{\partial T}{\partial z}$$

$$= \left(C + L_f m_i^2 + L_v m_v^2 \right) \frac{\partial T}{\partial t} - L_v m_v^2 \frac{\partial(u_a - u_w)}{\partial t}$$

$$k_{21} = \frac{L_f k_w + L_v k_{vh}}{\gamma_w}$$

$$k_{22} = \lambda + L_v k_{VT} + L_f k_{LT}$$

$$k_{23} = -\frac{L_v k_{vh}}{\gamma_w}$$

$$m_i^2 = \frac{\partial \theta_u}{\partial T}$$

$$m_v^2 = \frac{(n - \theta_w) g \omega h_v}{\gamma_w R(273.15 + T)} \left[\frac{\partial u_{sat}}{\partial T} - \frac{u_{sat}}{273.15 + T} + \frac{\rho_{sat} u_g - u_w}{\rho_w (273.15 + T)} \right]$$

where:

- u_w = pore water pressure, kPa,
- u_a = pore air pressure, kPa,
- k_w = hydraulic conductivity, m/s,
- k_{vh} = water vapour conductivity due to the vapour pressure gradient (i.e., equation [47]), m/s,
- k_{VT} = water vapour conductivity due to the temperature gradient, as defined in equation [48]), m/s,
- k_{LT} = hydraulic conductivity introduced by the temperature gradient, as defined in equation [28], m/s,
- m_i^2 = slope of soil freezing characteristic curve, and
SoilVision Systems Ltd.

Coupled Equations of Moisture Flow, Air Flow and Heat Flow

\[\theta_u = \text{volumetric unfrozen water content, } m^3/m^3. \]

It should be noted that in the derivation of the above equation [55], the term of \(L_{fvh} \) or \(L_{fvt} \) are excluded, because the evaporation phase change and freezing phase change couldn’t happen at the same time. It is assumed that the water evaporation only occurs at the temperature above soil freezing, and the occurrence of soil freezing phase change is constrained to the temperature interval between the liquidus temperature, \(T_{ef} \), to solidus temperature, \(T_{ep} \). In other words, the term of \(L_{fvh} \) or \(L_{fvt} \) is always 0. For the purpose of ease in the implementation, the latent heat of evaporation, \(L_v \), and latent heat of fusion, \(L_f \), is expressed as:

\[L_v = L_v(T)\delta(T - T_{ef}) \]
\[L_f = L_f(T) \left(\frac{|m^2_i|}{|m^2_i| + \varepsilon} \right) U(T - T_{ep}, T - T_{ef}) \]

where:

- \(L_v(T) \) = volumetric latent heat of water vaporization at the given temperature, \(J/m^3 \),
- \(L_f(T) \) = volumetric latent heat of fusion of water at the given temperature, \(J/m^3 \),
- \(\delta(x) \) = a unit function with value of \(\delta(x) = 1 \) if \(x > 0 \), else 0,
- \(U(x_1, x_2) \) = a unit function with value of \(U(x_1, x_2) = 1 \) if \(x_1 > 0 \) and \(x_2 < 0 \), else 0
- \(\varepsilon \) = an arbitrary small number, \(\varepsilon = 10^{-6} \), and
- \(m^2_i \) = the slope of soil freezing curve.

The equation [62] and equation [63] are used to ensure \(L_v = 0 \) if \(T < T_{ef} \), and \(L_f = 0 \) if \(m^2_i = 0 \) or \(T > T_{ef} \) and \(T < T_{ep} \).

3.1.3 Basic Equations for Air Flow

The following considerations and assumptions are made for the derivation of air flow with the two phases (water and gas):

- The air is a compressible gas,
- The bulk flow of the pore dry air is mainly driven by air pressure gradient,
- The flow of the partially dissolved air in water is governed by the water head gradient (Fredlund and Gitirana 2005; Thomas and He, 1997), and
- The diffusive effect of pore dry air can be neglected (Thomas and He, 1997).

The mass conservation of air flow can be modified on the basis of SVAIR theory manual:

\[\frac{\partial}{\partial t} \left[\rho_a \left(n - (1 - H_c)\theta_u \right) \right] + \frac{\partial}{\partial y} \left[\rho_a \left(q_o + H_c q_w \right) \right] = 0 \]

where:

- \(\rho_a \) = air density, \(kg/m^3 \),
- \(n \) = porosity, dimensionless,
- \(H_c \) = Henry’s volumetric coefficient of air solubility in the water, \(m^2/m^3 \),
\(\theta_w \) = volumetric water content, \(m^3/m^3 \),
\(q_a \) = bulk air-flow, \(m/s \),
\(q_w \) = water flow, \(m/s \),
\(y \) = elevation, \(m \), and
\(t \) = time, \(s \).

If the air is considered as an ideal gas, its density is

\[
\rho_a = C_u \frac{\omega_a(u_a + u_{atm})}{R(273.15 + T)}
\]

where:
\(\rho_a \) = air density, \(kg/m^3 \),
\(u_a \) = pore air pressure, \(kPa \),
\(u_{atm} \) = atmospheric pressure, \(kPa \),
\(\omega_a \) = average molecular weight, 0.0288 \(kg/mol \),
\(R \) = universal gas constant 8.3144 \(J/mol-K \),
\(T \) = pore air temperature, \(^oC \), and
\(C_u \) = unit conversion coefficient, for Metric units, \(C_u = 1000 \), and for Imperial units, \(C_u = 1 \).

The air flow velocity with the bulk motion obeys the Darcy law:

\[
q_a = \left[k_a + \frac{k_a \, \partial u_a}{\gamma_a \, \partial y} \right] u_a
\]

where:
\(q_a \) = air flow velocity, \(m/s \),
\(k_a \) = air conductivity, \(m/s \), which is the function of the degree of water saturation, and
\(\gamma_a \) = unit weight of air, \(kN \).

After the substitution of the equation \([66]\) into the equation \([64]\), the air flow governing equation is written with the format as follows:

\[
\frac{\partial}{\partial z} \left[k_{31} \, \frac{\partial u_w}{\partial z} + k_{32} \, \frac{\partial T}{\partial z} + k_{33} \, \frac{\partial u_a}{\partial z} + \gamma_a (k_a + H_c k_w) \right] =
\frac{g \omega_a}{R(273.15 + T)} \left[\frac{(n - (1 - H_c)\theta_w) \, \frac{\partial u_a}{\partial t} + (u_a + u_{atm}) \, \frac{\partial}{\partial t} (n - (1 - H_c)\theta_w)}{273.15 + T} \right]
\]
Let \(\theta_a = n - (1 - H_c) \theta_w \), the above equation can be rewritten as

\[
\frac{\partial}{\partial z} \left[k_{31} \frac{\partial u_w}{\partial z} + k_{32} \frac{\partial T}{\partial z} + k_{33} \frac{\partial u_a}{\partial z} + \gamma_a (k_a + H_c k_w) \right] =
\frac{g \rho_a}{R(273.15 + T)} \left[(\theta_a) \frac{\partial u_a}{\partial t} + (u_a + u_{atm}) \frac{\partial (\theta_a)}{\partial t} - \frac{(\theta_a)(u_a + u_{atm})}{273.15 + T} \right]
\]

[68]

\[
k_{31} = \frac{\gamma_a H_c k_w}{\gamma_w}, \quad k_{32} = 0, \quad k_{33} = k_a
\]

[69]

The Henry’s coefficient of air solubility in the air is dependent of the temperature, and it is approximated with the following expression based on the data fitting as shown in Figure 3.

\[
H_c = 10^{-5} \left(9.9 \times 10^{-2} T + 1 \times 10^{-3} T^2 \right)
\]

[70]

where:

- \(H_c \) = Henry’s coefficient of air solubility in the water, \(m^3/m^3 \), and
- \(T \) = Temperature, °C.

![Figure 3](image-url)

Figure 3 The relation of Henry’s coefficient of air solubility in the water vs. temperature (Fredlund and Rahardjo, 1993)

NOTE:

If water evaporation is not considered, let \(H_c = 0 \).

3.1.4 Determination of Ice and Hydraulic Conductivity Reduction

It is necessary to develop an advanced algorithm describing the ice change rate during soil freezing and thawing. The following analysis is a simple approach to estimate ice based on SWCC and SFCC. At any time, the ice content can be expressed as
\[\frac{\theta_i - \frac{D_w}{\rho_i} (\theta - \theta_u)}{\rho_i}, \text{ if } \theta > \theta_u \]
\[\theta_i = 0 \quad \text{ otherwise} \]

where:

- \(\theta \) = volumetric water content at soil temperatures above freezing point, \(\text{m}^3/\text{m}^3 \),
- \(\theta_u \) = volumetric unfrozen water content at soil temperatures blow the freezing point, \(\text{m}^3/\text{m}^3 \),
- \(\theta_i \) = volumetric ice content, \(\text{m}^3/\text{m}^3 \),
- \(\rho_l \) = water density, \(\text{kg/ m}^3 \), and
- \(\rho_i \) = ice density, \(\text{kg/ m}^3 \).

When the soil temperature is above the soil freezing point, the soil water content, \(\theta \), is uniquely determined by matric suction through using the Soil Water Characteristic Curve (SWCC). When the soil temperature is going down to the soil freezing point, the unfrozen water uniquely depends on the soil temperature through Soil Freezing Characteristic Curve (SFCC). The relationship between SWCC and SFCC is realized through the Clapeyron as defined in Equation [34].

In the frozen soil regime, soil matric suction is calculated based on the negative soil temperature, and the soil hydraulic conductivity can be calculated using this matric suction. It can be seen from the Equation [34] that when the soil temperature goes down, the soil matric suction is dramatically increased. Consequently, the hydraulic conductivity is significantly reduced in the frozen soil region. This behavior will be discussed in the section of Material Properties of this document.

3.2 COUPLED MODEL OF MOISTURE AND HEAT FLOW

By the default neither the vapor flow is included in SVFLUX, nor thermal convection included in SVHEAT. To include the vapor flow in the analysis of moisture migration, the climate boundary including evaporation should be applied with SVFLUX. More details see the SVFLUX theory manual. In addition, to take account of the thermal convection into the thermal flow, the convection option should be explicitly selected in SVHEAT model settings. In addition, the pore air in the soil is assumed to connect to the atmosphere, i.e., \(u_a = 0 \).

3.2.1 Transient-State Coupled Model for Moisture and Heat Flow

- **1D Horizontal**

\[
\frac{\partial}{\partial x} \left[k^{x \cdot \xi} \frac{\partial (u_w)}{\partial x} + k^{x \cdot \xi} \frac{\partial T}{\partial x} \right] + S_{\text{sink}} = \frac{\partial \theta_u}{\partial t} + \frac{\partial \theta_i}{\partial t} + \frac{\rho_l}{\rho_i} \frac{\partial \theta_i}{\partial t} \tag{72}
\]

\[
\frac{\partial}{\partial x} \left(k^{x \cdot \xi} \frac{\partial u_w}{\partial x} + k^{x \cdot \xi} \frac{\partial T}{\partial x} \right) - \left(C_w q^x + C_v q^y \right) \frac{\partial T}{\partial x} + Q_{\text{sink}} = 0
\]

\[
(C + L_f m_2 + L_v m_2^v) \frac{\partial T}{\partial t} - L_v m_2^v \frac{\partial (u_a - u_w)}{\partial t} \tag{73}
\]
\[k_{11}^x = \frac{k_x^w + k_{h}^v}{\gamma_w}, \quad k_{12}^x = k_{LT}^x + k^vT, \quad k_{x}^{LT} = m_2^{\phi} \frac{k_{x}^w}{\gamma_w} \] \[\text{[74]} \]

\[k_{21}^x = \frac{L_f k_{x}^w + L_v k_{h}^v}{\gamma_w}, \quad k_{22}^x = \lambda_x + L_v k^vT + L_f k_{LT}^x \]

- **1D Vertical**

\[\frac{\partial}{\partial y} \left[k_{11}^x \frac{\partial (u_w)}{\partial y} + k_{12}^x \frac{\partial T}{\partial y} + k_x^w \right] + S_{sk} = \frac{\partial \theta}{\partial t} + \frac{\rho_w \partial \theta}{\rho_w} \] \[\text{[75]} \]

\[\frac{\partial}{\partial y} \left[k_{21}^y \frac{\partial (u_w)}{\partial y} + k_{22}^y \frac{\partial T}{\partial y} + L_f k_{y}^w \right] - \left(C_w q_y^L + C_y q_y^x \right) \frac{\partial T}{\partial y} + Q_{sk} \]

\[= \left(C + L_f m_2^L + L_v m_2^v \right) \frac{\partial T}{\partial t} - L_v m_2^{vh} \frac{\partial (u_w - u_w)}{\partial t} \]

\[k_{11}^y = \frac{k_y^w + k_{h}^v}{\gamma_w}, \quad k_{12}^y = k_{LT}^y + k^vT, \quad k_{y}^{LT} = m_2^{\phi} \frac{k_{y}^w}{\gamma_w} \] \[\text{[76]} \]

\[k_{21}^y = \frac{L_f k_{y}^w + L_v k_{h}^v}{\gamma_w}, \quad k_{22}^y = \lambda_y + L_v k^vT + L_f k_{LT}^y \]

- **2D**

\[\frac{\partial}{\partial x} \left[k_{11}^x \frac{\partial (u_w)}{\partial x} + k_{12}^x \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{21}^y \frac{\partial (u_w)}{\partial y} + k_{22}^y \frac{\partial T}{\partial y} + k_y^w \right] + S_{sk} = \frac{\partial \theta}{\partial t} + \frac{\rho_1 \partial \theta_1}{\rho_w} \] \[\text{[77]} \]

\[\frac{\partial}{\partial x} \left[k_{21}^y \frac{\partial (u_w)}{\partial x} + k_{22}^y \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{11}^x \frac{\partial (u_w)}{\partial y} + k_{12}^x \frac{\partial T}{\partial y} + L_f k_{y}^w \right] - \left[C_w q_y^L + C_y q_y^x \right] \frac{\partial T}{\partial y} + Q_{sk} \]

\[= \left(C + L_f m_2^L + L_v m_2^v \right) \frac{\partial T}{\partial t} - L_v m_2^{vh} \frac{\partial (u_w - u_w)}{\partial t} \]

\[k_{11}^x = \frac{k_x^w + k_{h}^v}{\gamma_w}, \quad k_{12}^x = k_{LT}^x + k^vT \]

\[k_{21}^x = \frac{L_f k_{x}^w + L_v k_{h}^v}{\gamma_w}, \quad k_{22}^x = \lambda_x + L_v k^vT + L_f k_{LT}^x \] \[\text{[80]} \]

\[k_{11}^y = \frac{k_y^w + k_{h}^v}{\gamma_w}, \quad k_{12}^y = k_{LT}^y + k^vT \]

\[k_{21}^y = \frac{L_f k_{y}^w + L_v k_{h}^v}{\gamma_w}, \quad k_{22}^y = \lambda_y + L_v k^vT + L_f k_{LT}^y \] \[\text{[81]} \]

\[k_{22}^x = \lambda_x + L_v k^vT + L_f k_{LT}^x, \quad k_{22}^y = \lambda_y + L_v k^vT + L_f k_{LT}^y \] \[\text{[82]} \]

\[k_{x}^{LT} = m_2^{\phi} \frac{k_x^w}{\gamma_w}, \quad k_{y}^{LT} = m_2^{\phi} \frac{k_y^w}{\gamma_w} \] \[\text{[83]} \]

- **Plane**
\[
\text{h:} \quad \frac{\partial}{\partial x} \left[k_{11}^x \frac{\partial (u_w)}{\partial x} + k_{12}^x \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{11}^y \frac{\partial (u_w)}{\partial y} + k_{12}^y \frac{\partial T}{\partial y} \right] + S_{\sin k} = \frac{\partial \theta_a}{\partial t} + \frac{\rho_l \partial \theta_i}{\partial t} \quad [85]
\]

\[
\text{T:} \quad \frac{\partial}{\partial x} \left[k_{21}^x \frac{\partial (u_w)}{\partial x} + k_{22}^x \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{21}^y \frac{\partial (u_w)}{\partial y} + k_{22}^y \frac{\partial T}{\partial y} \right] \\
- \left[C_w q_x^L + C_y q_x^L \right] \frac{\partial T}{\partial x} - \left[C_w q_y^L + C_y q_y^L \right] \frac{\partial T}{\partial y} + Q_{\sin k} \\
= \left(C + L_f m_L^l + L_v m_L^v \right) \frac{\partial T}{\partial t} - L_v m_{vh} \frac{\partial (u_a - u_w)}{\partial t} \quad [86]
\]

\[
k_{11}^x = \frac{k_w^x + k_{vh}^x}{\gamma_w^x}, \quad k_{11}^y = \frac{k_w^y + k_{vh}^y}{\gamma_w^y} \quad [87]
\]

\[
k_{12}^x = k_{LT}^x + k_v^y, \quad k_{12}^y = k_{LT}^y + k_v^x \quad [88]
\]

\[
k_{21}^x = \frac{L_f k_w^x + L_v k_{vh}^x}{\gamma_w^x}, \quad k_{21}^y = \frac{L_f k_w^y + L_v k_{vh}^y}{\gamma_w^y} \quad [89]
\]

\[
k_{22}^x = \lambda_x + L_v k_v^y + L_f k_{LT}^x, \quad k_{22}^y = \lambda_y + L_v k_v^x + L_f k_{LT}^y \quad [90]
\]

\[
k_{LT}^x = m_L^x \frac{k_w^x}{\gamma_w^x}, \quad k_{LT}^y = m_L^y \frac{k_w^y}{\gamma_w^y} \quad [91]
\]

Axis-Symmetric

\[
\text{h:} \quad \frac{\partial}{\partial r} \left[k_{11}^r \frac{\partial (u_w)}{\partial r} + k_{12}^r \frac{\partial T}{\partial r} \right] + \frac{\partial}{\partial z} \left[k_{11}^z \frac{\partial (u_w)}{\partial z} + k_{12}^z \frac{\partial T}{\partial z} \right] + S_{\sin k} = \frac{\partial \theta_a}{\partial t} + \frac{\rho_l \partial \theta_i}{\partial t} \quad [92]
\]

\[
\text{T:} \quad \frac{\partial}{\partial r} \left[k_{21}^r \frac{\partial (u_w)}{\partial r} + k_{22}^r \frac{\partial T}{\partial r} \right] + \frac{\partial}{\partial z} \left[k_{21}^z \frac{\partial (u_w)}{\partial z} + k_{22}^z \frac{\partial T}{\partial z} \right] \\
- \left[C_w q_r^L + C_z q_r^L \right] \frac{\partial T}{\partial r} - \left[C_w q_z^L + C_z q_z^L \right] \frac{\partial T}{\partial z} + Q_{\sin k} \\
= \left(C + L_f m_L^l + L_v m_L^v \right) \frac{\partial T}{\partial t} - L_v m_{vh} \frac{\partial (u_a - u_w)}{\partial t} \quad [93]
\]

\[
k_{11}^r = \frac{k_w^r + k_{vh}^r}{\gamma_w^r}, \quad k_{11}^z = \frac{k_w^z + k_{vh}^z}{\gamma_w^z} \quad [94]
\]

\[
k_{12}^r = k_{LT}^r + k_v^z, \quad k_{12}^z = k_{LT}^z + k_v^r \quad [95]
\]

\[
k_{21}^r = \frac{L_f k_w^r + L_v k_{vh}^r}{\gamma_w^r}, \quad k_{21}^z = \frac{L_f k_w^z + L_v k_{vh}^z}{\gamma_w^z} \quad [96]
\]
\[k_{22}^r = \lambda_r + L_r k^v T + L_f k_r^L T, \quad k_{22}^z = \lambda_z + L_z k^v T + L_f k_z^L T \]

\[k_r^L T = m_2^r \frac{k_w}{\gamma_w}, \quad k_z^L T = m_2^r \frac{k_z}{\gamma_w} \]

3D

\[\frac{\partial}{\partial x} \left[k_{11}^x \frac{\partial (u_w)}{\partial x} + k_{22}^x \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{11}^y \frac{\partial (u_w)}{\partial y} + k_{22}^y \frac{\partial T}{\partial y} \right] + \frac{\partial}{\partial z} \left[k_{11}^z \frac{\partial (u_w)}{\partial z} + k_{22}^z \frac{\partial T}{\partial z} + k_z \right] + S_{\sin k} = \frac{\partial}{\partial t} \left(\frac{\partial (u_w)}{\partial t} + \rho_I \frac{\partial \theta}{\partial t} \right) \]

\[\frac{\partial}{\partial x} \left[k_{11}^L \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{11}^L \frac{\partial T}{\partial y} \right] + \frac{\partial}{\partial z} \left[k_{11}^L \frac{\partial T}{\partial z} + k_L \frac{\partial T}{\partial z} + L_f k_z^L \right] - \left(C_w q_x + C_v q_x^v \right) \frac{\partial T}{\partial x} - \left(C_w q_y + C_v q_y^v \right) \frac{\partial T}{\partial y} - \left(C_w q_z + C_v q_z^v \right) \frac{\partial T}{\partial z} + Q_{\sin k} \]

\[= \left(C + L_f m_1^L + L_v m_2^L \right) \frac{\partial T}{\partial t} - L_m \frac{\partial (u_a - u_w)}{\partial t} \]

\[k_{11}^x = \frac{k_w + k_{11}^L}{\gamma_w}, \quad k_{11}^y = \frac{k_w + k_{11}^L}{\gamma_w}, \quad k_{11}^z = \frac{k_z + k_{11}^L}{\gamma_w} \]

\[k_{21}^x = \frac{L_f k_w + L_v k_{21}^L}{\gamma_w}, \quad k_{21}^y = \frac{L_f k_w + L_v k_{21}^L}{\gamma_w}, \quad k_{21}^z = \frac{L_f k_w + L_v k_{21}^L}{\gamma_w} \]

\[k_{22}^x = \lambda_x + L_v k^v T + L_f k_x^L T, \quad k_{22}^y = \lambda_y + L_v k^v T + L_f k_y^L T, \quad k_{22}^z = \lambda_z + L_v k^v T + L_f k_z^L T \]

\[k_x^L T = m_2^L \frac{k_w}{\gamma_w}, \quad k_y^L T = m_2^L \frac{k_y}{\gamma_w}, \quad k_z^L T = m_2^L \frac{k_z}{\gamma_w} \]

where:

- \(u_w \) = pore water pressure due to hydraulic head, kPa,
- \(T \) = material temperature, °C,
- \(t \) = time, s,
- \(k_{11}, k_{21}, k_{22} \) = hydraulic conductivity in \(x, y, z \), or \(r \)-directions, m/s. For a homogenous material, \(k = k_{11} = k_{21} = k_{22} \),
- \(k^v \) = pore-water vapor conductivity by vapor diffusion within the air phase, m/s, see equation [47]
- \(k^T \) = vapor diffusion due to temperature gradient, m/s, see equation [48]
- \(\gamma_w \) = unit weight of water, kN/m³,
- \(\lambda_x, \lambda_y, \lambda_z \) = thermal conductivity in \(x, y, z \), or \(r \)-directions, J/(s·m·°C), For a
\(\lambda_z, \lambda_r \) homogenous material, \(\lambda_x = \lambda_y = \lambda_z = \lambda_r \)

\(q_x^L, q_y^L, q_z^L, q_r^L \) = pore-water flow rate (Darcian velocity) in the \(x, y, z, \) or \(r \)-direction across a unit area of the soil due to the hydraulic head gradient, m/s, see equation [27],

\(q_x^v, q_y^v, q_z^v, q_r^v \) = water vapor flow rate (Darcian velocity) in the \(x, y, z, \) or \(r \)-direction across a unit area of the soil due to the hydraulic head gradient, m/s, see equation [46],

\(L_v \) = volumetric latent heat of water vaporization or condensation, see equation [62], J/m\(^3\),

\(L_f \) = volumetric latent heat of water freezing or thawing, as given in equation [63], J/m\(^3\),

\(C_w \) = volumetric heat capacity of water, J/(m\(^3\)-°C),

\(C_v \) = volumetric heat capacity of vapour, J/(m\(^3\)-°C),

\(C \) = volumetric heat capacity of soil, J/(m\(^3\)-°C),

\(\theta_v \) = volumetric water vapour content, m\(^3\)/m\(^3\),

\(m^f \) = slope of soil Freezing characteristic curve,

\(m^o \) = slope of the relation of soil matric suction to the temperature,

\(m^{2v} \) = defined in equation [60], and

\(m^{2vh} \) = defined in equation [61].

NOTE:

The water vaporization factor is included only when a vaporization climate boundary condition is applied. Otherwise, \(k_vT = 0 \), and \(k_{vh} = 0 \).

If the water flow induced by temperature gradient is neglected, let \(k_LT = 0 \).

3.2.2 Steady-State Coupled Model of Moisture and Heat Flow

- **1D Horizontal**

\[\frac{\partial}{\partial x} \left[k_{11}^{x} \frac{\partial (u_w)}{\partial x} + k_{12}^{x} \frac{\partial T}{\partial x} \right] + S_{sin\ k} = 0 \] \[\text{[106]} \]

\[\frac{\partial}{\partial x} \left(k_{21}^{x} \frac{\partial u_w}{\partial x} + k_{22}^{x} \frac{\partial T}{\partial x} \right) - \left(C_w q_x^v + C_v q_x^v \right) \frac{\partial T}{\partial x} + Q_{sin\ k} = 0 \] \[\text{[107]} \]

\[k_{11}^{x} = \frac{k_w^v + k_{vh}^v}{\gamma_w^v}, \quad k_{12}^{x} = k_{LT}^{x} + k_{vT}^{x}, \quad k_{LT}^{x} = m^o \frac{k_w^v}{\gamma_w^v} \] \[\text{[108]} \]

\[k_{21}^{x} = \frac{L_f k_w^v + L_v k_{vh}^v}{\gamma_w^v}, \quad k_{22}^{x} = \lambda_x + L_v k_{vT}^{x} + L_f k_{LT}^{x} \]

- **1D Vertical**

\[\frac{\partial}{\partial y} \left[k_{11}^{y} \frac{\partial (u_w)}{\partial y} + k_{12}^{y} \frac{\partial T}{\partial y} + k_w^v \right] + S_{sin\ k} = 0 \] \[\text{[109]} \]

\[T: \quad \frac{\partial}{\partial y} \left(k_{21}^y \frac{\partial u_w}{\partial y} + k_{22}^y \frac{\partial T}{\partial y} + L_f k_y^w \right) - \left(C_w q_x^L + C_v q_y^v \right) \frac{\partial T}{\partial y} + Q_{sink} = 0 \] \[[110] \]

\[k_{11}^y = \frac{k_y^w + k_y^{vh}}{\gamma_w}, \quad k_{12}^y = k_y^{LT} + k_y^{VT}, \quad k_{12}^v = m_2^w \frac{k_y^w}{\gamma_w} \]

\[k_{21}^v = \frac{L_f k_y^w + L_v k_y^{vh}}{\gamma_w}, \quad k_{22}^v = \lambda_y + L_v k_y^{VT} + L_f k_y^{LT} \]

\[\text{• 2D} \]

\[h: \quad \frac{\partial}{\partial x} \left[k_x^s \frac{\partial (u_w)}{\partial x} + k_x^v \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_y^s \frac{\partial (u_w)}{\partial y} + k_y^v \frac{\partial T}{\partial y} \right] + S_{sink} = 0 \] \[[112] \]

\[T: \quad \frac{\partial}{\partial x} \left[k_x^s \frac{\partial (u_w)}{\partial x} + k_x^v \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_y^s \frac{\partial (u_w)}{\partial y} + k_y^v \frac{\partial T}{\partial y} + L_f k_y^w \right] + Q_{sink} \]

\[- \left[C_w q_x^L + C_v q_x^v \right] \frac{\partial T}{\partial x} - \left[C_w q_y^L + q_y^v \right] \frac{\partial T}{\partial y} = 0 \]

\[k_{11}^x = \frac{k_x^w + k_x^{vh}}{\gamma_w}, \quad k_{12}^x = k_x^{LT} + k_x^{VT} \]

\[k_{12}^v = L_v k_y^{VT} + L_f k_y^{LT}, \quad k_{12}^v = \lambda_y + L_v k_y^{VT} + L_f k_y^{LT} \]

\[k_{21}^x = m_2^x \frac{k_x^w}{\gamma_w} \]

\[\text{• Plane} \]

\[h: \quad \frac{\partial}{\partial x} \left[k^x \frac{\partial (u_w)}{\partial x} + k^v \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_y^s \frac{\partial (u_w)}{\partial y} + k_y^v \frac{\partial T}{\partial y} \right] + S_{sink} = 0 \] \[[121] \]

\[T: \quad \frac{\partial}{\partial x} \left[k_x^s \frac{\partial (u_w)}{\partial x} + k_x^v \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_y^s \frac{\partial (u_w)}{\partial y} + k_y^v \frac{\partial T}{\partial y} + L_f k_y^w \right] + Q_{sink} \]

\[- \left[C_w q_x^L + C_v q_x^v \right] \frac{\partial T}{\partial x} - \left[C_w q_y^L + q_y^v \right] \frac{\partial T}{\partial y} = 0 \]

\[k_{11}^x = \frac{k_x^w + k_x^{vh}}{\gamma_w}, \quad k_{11}^v = \frac{k_y^w + k_y^{vh}}{\gamma_w} \]

\[k_{12}^x = k_x^{LT} + k_x^{VT}, \quad k_{12}^v = k_y^{LT} + k_y^{VT} \] \[[122] \]
\[k_{21}^x = \frac{L_f k_x^w + L_v k_y^v}{\gamma_w}, \quad k_{21}^y = \frac{L_f k_y^w + L_v k_y^v}{\gamma_w} \]

\[k_{22}^x = \lambda_x + L_v k_y^{vT} + L_f k_x^{LT}, \quad k_{22}^y = \lambda_y + L_v k_y^{vT} + L_f k_y^{LT} \]

\[k_x^{LT} = m_2^w \frac{k_x^w}{\gamma_w}, \quad k_y^{LT} = m_2^w \frac{k_y^w}{\gamma_w} \]

Axis-Symmetric

\[\frac{\partial}{\partial r} \left[k_{21}^x \frac{\partial (u_w)}{\partial r} + k_{12}^x \frac{\partial T}{\partial r} \right] + \frac{\partial}{\partial r} \left[k_{11}^x \frac{\partial (u_w)}{\partial r} + \frac{k_{12}^x}{r} \frac{\partial T}{\partial r} + \frac{\partial}{\partial z} \left[k_{11}^x \frac{\partial (u_w)}{\partial z} + k_{12}^x \frac{\partial T}{\partial z} \right] \right] + S_{\sin k} = 0 \]

\[\frac{\partial}{\partial r} \left[k_{11}^r \frac{\partial (u_w)}{\partial r} + k_{12}^r \frac{\partial T}{\partial r} \right] + \frac{\partial}{\partial r} \left[k_{11}^r \frac{\partial (u_w)}{\partial r} + \frac{k_{12}^r}{r} \frac{\partial T}{\partial r} + \frac{\partial}{\partial z} \left[k_{11}^r \frac{\partial (u_w)}{\partial z} + k_{12}^r \frac{\partial T}{\partial z} \right] \right] \]

\[- \left(C_w q_r^L + C_v q_r^v \right) \frac{\partial T}{\partial r} - \left(C_w q_y^L + C_v q_y^v \right) \frac{\partial T}{\partial z} + Q_{\sin k} = 0 \]

\[k_{11}^r = \frac{k_r^w + k_y^v}{\gamma_w}, \quad k_{11}^z = \frac{k_y^w + k_y^v}{\gamma_w} \]

\[k_{12}^r = k_r^{LT} + k_r^{vT}, \quad k_{12}^z = k_z^{LT} + k_z^{vT} \]

\[k_{21}^r = \frac{L_f k_r^w + L_v k_y^v}{\gamma_w}, \quad k_{21}^z = \frac{L_f k_y^w + L_v k_y^v}{\gamma_w} \]

\[k_{22}^r = \lambda_r + L_v k_y^{vT} + L_f k_r^{LT}, \quad k_{22}^z = \lambda_z + L_v k_y^{vT} + L_f k_y^{LT} \]

\[k_r^{LT} = m_2^w \frac{k_r^w}{\gamma_w}, \quad k_y^{LT} = m_2^w \frac{k_y^w}{\gamma_w} \]

3D

\[\frac{\partial}{\partial x} \left[k_{21}^x \frac{\partial (u_w)}{\partial x} + k_{12}^x \frac{\partial T}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{11}^y \frac{\partial (u_w)}{\partial y} + k_{12}^y \frac{\partial T}{\partial y} \right] + \frac{\partial}{\partial z} \left[k_{11}^z \frac{\partial (u_w)}{\partial z} + k_{12}^z \frac{\partial T}{\partial z} \right] + S_{\sin k} = 0 \]

\[- \left(C_w q_x^L + C_v q_x^v \right) \frac{\partial T}{\partial x} - \left(C_w q_y^L + C_v q_y^v \right) \frac{\partial T}{\partial y} + Q_{\sin k} = 0 \]

\[k_{11}^x = \frac{k_x^w + k_y^v}{\gamma_w}, \quad k_{11}^y = \frac{k_y^w + k_y^v}{\gamma_w}, \quad k_{11}^z = \frac{k_z^w + k_y^v}{\gamma_w} \]
3.3 COUPLED MODEL FOR HEAT AND AIR FLOW

If moisture flow is not considered, the Henry’s air solubility coefficient, \(H_c = 0 \), and the water evaporation is neglected. The governing equations for air flow and heat flow are simplified as described in the following sections.

3.3.1 Transient-State Coupled Model of Heat Flow and Air Flow

- **1D Horizontal**

 \[
 u_a := \frac{\partial}{\partial x} \left(k^a_x \frac{\partial u_a}{\partial x} + \gamma_a k^a_y \right) = \frac{g \omega_a}{R(273.15 + T)} \left[\theta_a \frac{\partial u_a}{\partial t} - \frac{\theta_a(u_a + u_{atm})}{273.15 + T} \frac{\partial T}{\partial t} \right]
 \]
 \[140\]

 \[
 T := \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) - \left(C_a q^a_x \right) \frac{\partial T}{\partial x} + Q_{sink} = (C + L_f m^i) \frac{\partial T}{\partial t}
 \]
 \[141\]

- **1D Vertical**

 \[
 u_a := \frac{\partial}{\partial y} \left(k^a_y \frac{\partial u_a}{\partial y} + \gamma_a k^a_x \right) = \frac{g \omega_a}{R(273.15 + T)} \left[\theta_a \frac{\partial u_a}{\partial t} - \frac{\theta_a(u_a + u_{atm})}{273.15 + T} \frac{\partial T}{\partial t} \right]
 \]
 \[142\]

 \[
 T := \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_a q^a_y \right) \frac{\partial T}{\partial y} + Q_{sink} = (C + L_f m^i) \frac{\partial T}{\partial t}
 \]
 \[143\]

- **2D**

 \[
 u_a := \frac{\partial}{\partial x} \left(k^a_x \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k^a_y \frac{\partial u_a}{\partial y} + \gamma_a k^a_y \right) = \frac{g \omega_a}{R(273.15 + T)} \left[\theta_a \frac{\partial u_a}{\partial t} - \frac{\theta_a(u_a + u_{atm})}{273.15 + T} \frac{\partial T}{\partial t} \right]
 \]
 \[144\]
\[
T: \quad \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_a q_x^a \frac{\partial T}{\partial x} \right) - \left(C_a q_y^a \frac{\partial T}{\partial y} \right) + Q_{\sin k} = \left(C + L_f m_2^1 \right) \frac{\partial T}{\partial t} \tag{145}
\]

• Plane

\[
U_a: \quad \frac{\partial}{\partial x} \left(k_x^a \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y^a \frac{\partial u_a}{\partial y} \right) = \frac{g \omega_a}{R(273.15+T)} \left[\theta_a \frac{\partial u_a}{\partial t} - \theta_a \frac{(u_a + u_{atm}) \partial T}{273.15+T} \right] \tag{146}
\]

\[
T: \quad \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_a q_x^a \frac{\partial T}{\partial x} \right) - \left(C_a q_y^a \frac{\partial T}{\partial y} \right) + Q_{\sin k} = \left(C + L_f m_2^1 \right) \frac{\partial T}{\partial t} \tag{147}
\]

• Axisymmetric

\[
U_a: \quad \frac{\partial}{\partial r} \left(k_r^a \frac{\partial u_a}{\partial r} \right) + \frac{k_y^a}{r} \frac{\partial u_a}{\partial r} + \frac{\partial}{\partial z} \left(k_z^a \frac{\partial u_a}{\partial z} + \gamma_a k_z^a \right) = \frac{g \omega_a}{R(273.15+T)} \left[\theta_a \frac{\partial u_a}{\partial t} - \theta_a \frac{(u_a + u_{atm}) \partial T}{273.15+T} \right] \tag{148}
\]

\[
T: \quad \frac{\partial}{\partial r} \left(\lambda_r \frac{\partial T}{\partial r} \right) + \frac{\lambda_y}{r} \frac{\partial T}{\partial r} + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) - \left(C_a q_r^a \right) \frac{\partial T}{\partial r} = \left(C + L_f m_2^1 \right) \frac{\partial T}{\partial t} \tag{149}
\]

• Three-Dimensional

\[
U_a: \quad \frac{\partial}{\partial x} \left(k_x^a \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y^a \frac{\partial u_a}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z^a \frac{\partial u_a}{\partial z} + \gamma_a k_z^a \right) = \frac{g \omega_a}{R(273.15+T)} \left[\theta_a \frac{\partial u_a}{\partial t} - \theta_a \frac{(u_a + u_{atm}) \partial T}{273.15+T} \right] \tag{150}
\]

\[
T: \quad \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) = \left(C + L_f m_2^1 \right) \frac{\partial T}{\partial t} \tag{151}
\]

where:

\[u_a \] = pore-air pressure, kPa,

\[k_x^a, k_y^a \] = air conductivity of the material in the x, y, z, or r-directions, m/s. For homogenous material, \(k_x^a = k_y^a = k_z^a = k_r^a \),

\[\gamma_a \] = unit of air weight, kN/m³,

\[n \] = porosity, dimensionless,

\[\theta_w \] = volumetric water content of a material, m³/m³,
SoilVision Systems Ltd.

Coupled Equations of Moisture Flow, Air Flow and Heat Flow

\[\omega_a = \text{average molecular weight of air} \ 0.0288 \ kg/mol, \]
\[g = \text{acceleration due to gravity,} \ 9.81 \ m/s^2, \]
\[R = \text{universal gas constant,} \ 8.3144 \ J/mol-K, \]
\[T = \text{temperature,} \ ^\circ C, \]
\[\lambda_x, \lambda_y, \lambda_z = \text{thermal conductivity in} \ x, \ y, \ z, \ or \ r\text{-direction,} \ J/(s-m\cdot ^\circ C). \text{ For a homogenous material,} \lambda_x = \lambda_y = \lambda_z = \lambda_r, \]
\[q_{xa}, q_{ya}, q_{za}, q_{ra} = \text{pore-air flow velocity (Darcian velocity) in the} \ x, \ y, \ z, \ or \ r\text{-direction across a unit area of the soil due to the air pressure gradient or the temperature gradient,} \ m/s, \]
\[L_f = \text{volumetric latent heat of water freezing or thawing,} \ J/m^3, \]
\[L_f = 3.334\times10^8 \ J/\ m^3 \text{ if} \ T_{ef} > T > T_{ep}, \text{ otherwise} = 0. \]
\[T_{ef} = \text{temperature at soil freezing point,} \ ^\circ C, \]
\[T_{ep} = \text{temperature at the end of phase change during freezing,} \ ^\circ C, \]
\[C_a = \text{volumetric heat capacity of air,} \ J/(m^3\cdot ^\circ C), \]
\[C = \text{volumetric heat capacity of the soil,} \ J/(m^2\cdot ^\circ C), \]
\[m_2 = \text{slope of soil Freezing characteristic curve, and} \]
\[Q_{sink} = \text{heat source or sink,} \ J/s-m^3. \]

3.3.2 Steady-State Coupled Model of Heat Flow and Air Flow

- **1D Horizontal**

 \[u_a: \]

 \[\frac{\partial}{\partial x} \left(k_x \frac{\partial u_a}{\partial x} \right) = 0 \quad [152] \]

 \[T: \]

 \[\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) - \left(C_a q_x^a \right) \frac{\partial T}{\partial x} + Q_{sink} = 0 \quad [153] \]

- **1D Vertical**

 \[u_a: \]

 \[\frac{\partial}{\partial y} \left(k_y \frac{\partial u_a}{\partial y} + \gamma_k k_y \right) = 0 \quad [154] \]

 \[T: \]

 \[\frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_a q_y^a \right) \frac{\partial T}{\partial y} + Q_{sink} = 0 \quad [155] \]

- **2D**

 \[u_a: \]

 \[\frac{\partial}{\partial x} \left(k_x \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial u_a}{\partial y} + \gamma_k k_y \right) = 0 \quad [156] \]

 \[T: \]

 \[\frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_a q_x^a \right) \frac{\partial T}{\partial x} - \left(C_a q_y^a \right) \frac{\partial T}{\partial y} + Q_{sink} = 0 \quad [157] \]
3.3.3 Heat Flow and Air Flow due to Natural Convection

This section presents the governing equations of air flow due to thermo-buoyant or natural convection. The air density is assumed to be incompressible in the natural convection, and it can be applicable with Oberbeck-Boussinesq approximation as follows (Nield and Bejan, 2006):

\[\rho_a = \rho_{a0} \left[1 - \beta_a (T - T_0) \right] = \beta \rho_{a0} \]

where:

- \(\rho_a \) = pore air density at the given temperature, \(\text{kg/m}^3 \),
- \(\rho_{a0} \) = pore air density at the reference temperature, \(\text{kg/m}^3 \),
- \(T \) = temperature, \(^\circ \text{C} \),
- \(T_0 \) = reference temperature, \(^\circ \text{C} \), and
- \(\beta_a \) = air expansion coefficient, \(1/^\circ \text{C} \).
The thermal expansion coefficient varies with temperature. Please see the following web site for reference: http://www.engineeringtoolbox.com/air-properties-d_156.html

The air flow governing equation \([68 \)] is simplified as:

\[
\frac{\partial}{\partial z} \left(k_a \frac{\partial u_a}{\partial y} + \gamma_a k_a \right) = 0 \tag{165}
\]

\[
\gamma_a = \frac{g \rho_a}{C_u} = \frac{g \rho_a [1 - \beta(T - T_0)]}{C_u} \tag{166}
\]

The following presents the heat and air flow equations in the process of natural convection under different coordinates:

- **1D Horizontal**

 \(u_a : \quad \frac{\partial}{\partial x} \left(k_x \frac{\partial u_a}{\partial x} \right) = 0 \tag{167} \)

 \(T : \quad \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) - \left(C_d q_x^a \frac{\partial T}{\partial x} \right) + Q_{sink} = (C + L_f m_x^1) \frac{\partial T}{\partial t} \tag{168} \)

- **1D Vertical**

 \(u_a : \quad \frac{\partial}{\partial y} \left(k_y \frac{\partial u_a}{\partial y} + \gamma_y k_y \right) = 0 \tag{169} \)

 \(T : \quad \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_d q_y^a \frac{\partial T}{\partial y} \right) + Q_{sink} = (C + L_f m_y^1) \frac{\partial T}{\partial t} \tag{170} \)

- **2D**

 \(u_a : \quad \frac{\partial}{\partial x} \left(k_x \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial u_a}{\partial y} + \gamma_y k_y \right) = 0 \tag{171} \)

 \(T : \quad \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) - \left(C_d q_x^a \frac{\partial T}{\partial x} \right) - \left(C_d q_y^a \frac{\partial T}{\partial y} \right) + Q_{sink} \)

 \(= (C + L_f m_x^2) \frac{\partial T}{\partial t} \tag{172} \)

- **Plane**

 \(u_a : \quad \frac{\partial}{\partial x} \left(k_x \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial u_a}{\partial y} \right) = 0 \tag{173} \)
3.4 FULLY COUPLED MODEL OF MOISTURE, AIR, AND HEAT FLOW

The following is the governing equations coupled with the moisture (liquid and vapor) flow, air flow and heat flow under the different coordinates.

• 1D Horizontal

\[h: \quad \frac{\partial}{\partial x} \left[k_{12} \frac{\partial u_w}{\partial x} + k_{13} \frac{\partial u_a}{\partial x} \right] + S_{\text{sink}} = \frac{\partial}{\partial t} \frac{\theta_w}{\rho_w} + \frac{\partial}{\partial t} \frac{\theta_i}{\rho_i} \] \[t: \quad \frac{\partial}{\partial x} \left(k_{21} \frac{\partial u_w}{\partial x} + k_{22} \frac{\partial T}{\partial x} + k_{23} \frac{\partial u_a}{\partial x} \right) - \left(C_{aL} + C_{aV} + C_{aQx} \right) \frac{\partial T}{\partial x} + Q_{\text{sink}} = \left(C + L_f m^i_2 \right) \frac{\partial T}{\partial t} \] \[u_a: \quad \frac{\partial}{\partial x} \left[g \omega_a \frac{\partial u_a}{\partial x} + (u_a + u_{\text{atm}}) \frac{\partial}{\partial t} \frac{\theta_a}{273.15 + T} \right] \]
\[k_{11}^y = \frac{k_y^w + k_y^{vh}}{\gamma_w}, \quad k_{12}^y = k_{y}^{LT} + k_{y}^{vT}, \quad k_{13}^y = -\frac{k_y^{vh}}{\gamma_w} \] \[182 \]

\[k_{21}^y = \frac{L_f k_y^w + L_v k_y^{vh}}{\gamma_w}, \quad k_{22}^y = \lambda_y + L_v k_y^{vT} + L_f k_{y}^{LT}, \quad k_{23}^y = -\frac{L_v k_y^{vh}}{\gamma_w} \] \[183 \]

\[k_{31}^y = \frac{\gamma_a H_c k_y^w}{\gamma_w}, \quad k_{32}^y = 0, \quad k_{33}^y = k_y^a \] \[184 \]

\[k_{LT}^y = m_2^\theta \frac{k_y^w}{\gamma_w} \] \[185 \]

1D Vertical

\[\frac{\partial}{\partial y} \left[k_{11}^y \frac{\partial u_w}{\partial y} + k_{12}^y \frac{\partial T}{\partial y} + k_{13}^y \frac{\partial u_a}{\partial y} + k_y^w \right] + S_{\sin k} = \frac{\partial \theta_u}{\partial t} + \frac{\rho_l \partial \theta_l}{\partial t} \] \[186 \]

\[\frac{\partial}{\partial y} \left[k_{21}^y \frac{\partial u_w}{\partial y} + k_{22}^y \frac{\partial T}{\partial y} + k_{23}^y \frac{\partial u_a}{\partial y} + \frac{L_f k_y^w}{k_y^w} \left(C_w q_y^L + C_v q_y^v + C_a q_y^a \right) \frac{\partial T}{\partial y} \right] + Q_{\sin k} = \left(C + L_f m_2^i + L_v m_2^v \right) \frac{\partial T}{\partial t} - L_v m_2^v \frac{\partial (u_a - u_w)}{\partial t} \] \[187 \]

\[\frac{\partial}{\partial y} \left[k_{31}^y \frac{\partial u_w}{\partial y} + k_{32}^y \frac{\partial T}{\partial y} + k_{33}^y \frac{\partial u_a}{\partial y} + \gamma_y (k_y^a + H_c k_y^w) \right] = \] \[188 \]

\[\frac{g \omega_a}{R(273.15 + T)} \left[\left(\theta_a^0 \right) \frac{\partial u_a}{\partial t} + (u_a + u_{\text{atm}}) \frac{\partial}{\partial t} \left(\theta_a^0 \right) - \frac{(\theta_a^0)(u_a + u_{\text{atm}})}{273.15 + T} \frac{\partial T}{\partial t} \right] \]

\[k_{11}^y = \frac{k_y^w + k_y^{vh}}{\gamma_w}, \quad k_{12}^y = k_{y}^{LT} + k_{y}^{vT}, \quad k_{13}^y = -\frac{k_y^{vh}}{\gamma_w} \] \[189 \]

\[k_{21}^y = \frac{L_f k_y^w + L_v k_y^{vh}}{\gamma_w}, \quad k_{22}^y = \lambda_y + L_v k_y^{vT} + L_f k_{y}^{LT}, \quad k_{23}^y = -\frac{L_v k_y^{vh}}{\gamma_w}, \] \[190 \]

\[k_{31}^y = \frac{\gamma_a H_c k_y^w}{\gamma_w}, \quad k_{32}^y = 0, \quad k_{33}^y = k_y^a \] \[191 \]

\[k_{LT}^y = m_2^\theta \frac{k_y^w}{\gamma_w} \] \[192 \]

2D

\[\frac{\partial}{\partial x} \left[k_{11}^x \frac{\partial u_w}{\partial x} + k_{12}^x \frac{\partial T}{\partial x} + k_{13}^x \frac{\partial u_a}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{11}^y \frac{\partial u_w}{\partial y} + k_{12}^y \frac{\partial T}{\partial y} + k_{13}^y \frac{\partial u_a}{\partial y} + k_y^w \right] + S_{\sin k} = \frac{\partial \theta_u}{\partial t} + \frac{\rho_l \partial \theta_l}{\partial t} \] \[193 \]
\[
T: \quad \frac{\partial}{\partial x} \left(k_{x1}^x \frac{\partial u_w}{\partial x} + k_{x2}^x \frac{\partial T}{\partial x} + k_{x3}^x \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_{y1}^y \frac{\partial u_w}{\partial y} + k_{y2}^y \frac{\partial T}{\partial y} + k_{y3}^y \frac{\partial u_a}{\partial y} + L_f k_y^w \right) \\
- \left(C_w q_{1x}^w + C_s q_{2x}^w + C_a q_{3x}^a \right) \frac{\partial T}{\partial x} - \left(C_w q_{1y}^w + C_s q_{2y}^w + C_a q_{3y}^a \right) \frac{\partial T}{\partial y} + Q_{\text{sink}} \\
= \left[C + L_f m_2^x + L_s m_2^y \right] \frac{\partial T}{\partial t} - L_s m_2^v \frac{\partial (u_a - u_w)}{\partial t} \\
\frac{\partial}{\partial x} \left[k_{x1}^x \frac{\partial u_w}{\partial x} + k_{x2}^x \frac{\partial T}{\partial x} + k_{x3}^x \frac{\partial u_a}{\partial x} \right] + \\
\frac{\partial}{\partial y} \left[k_{y1}^y \frac{\partial u_w}{\partial y} + k_{y2}^y \frac{\partial T}{\partial y} + k_{y3}^y \frac{\partial u_a}{\partial y} + \gamma_a (k_y^a + H_y k_y^w) \right] \\
\frac{g \omega_a}{R(273.15 + T) \left(\frac{\partial u_a}{\partial t} + (u_a + u_{\text{atm}}) \frac{\partial}{\partial t} (\theta_a) - \frac{\left(\theta_a \right) (u_a + u_{\text{atm}}) \frac{\partial T}{\partial t}}{273.15 + T} \right)} \\
k_{x1}^x = k^w + k^{vh}, \quad k_{y1}^y = k^{LT}, \quad k_{x2}^x = k^v + k^{-T}, \quad k_{y2}^y = k^v, \quad k_{x3}^x = \frac{k^{vh}}{\gamma_w}, \quad k_{y3}^y = \frac{k^v}{\gamma_w} \\
k_{21}^x = \frac{L_f k_x^w + L_v k^{vh}}{\gamma_w}, \quad k_{22}^y = \lambda_x + L_v k^v + L_f k^{LT}, \quad k_{23}^y = \frac{L_v k^{vh}}{\gamma_w} \\
k_{21}^y = \frac{L_f k_y^w + L_v k^{vh}}{\gamma_w}, \quad k_{22}^y = \lambda_y + L_v k^v + L_f k^{LT}, \quad k_{23}^y = \frac{L_v k^{vh}}{\gamma_w} \\
k_{31}^x = \frac{\gamma_a H_c k_x^w}{\gamma_w}, \quad k_{32}^y = 0, \quad k_{33}^x = k_a^x \\
k_{31}^y = \frac{\gamma_a H_c k_y^w}{\gamma_w}, \quad k_{32}^y = 0, \quad k_{33}^y = k_a^y \\
k_{x1}^{LT} = m_2^{\phi} k_x^w, \quad k_{y1}^{LT} = m_2^{\phi} k_y^w \\
\cdot \quad 2D-\text{Plan} \\
h: \quad \frac{\partial}{\partial x} \left[k_{11}^x \frac{\partial u_w}{\partial x} + k_{12}^x \frac{\partial T}{\partial x} + k_{13}^x \frac{\partial u_a}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{11}^y \frac{\partial u_w}{\partial y} + k_{12}^y \frac{\partial T}{\partial y} + k_{13}^y \frac{\partial u_a}{\partial y} \right] \\
+ S_{\text{sink}} = \frac{\partial \theta_a}{\partial t} + \frac{\rho_i}{\rho_w} \frac{\partial \theta_i}{\partial t}
\]
\(T: \)
\[
\frac{\partial}{\partial x} \left(k_{21}^x \frac{\partial u_w}{\partial x} + k_{22}^x \frac{\partial u_w}{\partial x} + k_{23}^x \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_{21}^y \frac{\partial u_w}{\partial y} + k_{22}^y \frac{\partial u_w}{\partial y} + k_{23}^y \frac{\partial u_a}{\partial y} \right) \\
- \left(C_w q_x^w + C_i q_x^i + C_d q_a^d \right) \frac{\partial T}{\partial x} - \left(C_w q_y^w + C_i q_y^i + C_d q_a^d \right) \frac{\partial T}{\partial y} + Q_{\sin k} \\
= (C + L_f m_2^y + L_n m_2^y) \frac{\partial T}{\partial t} - L_n m_2^y \frac{\partial (u_a - u_w)}{\partial t}
\]

\(U_a: \)
\[
\frac{\partial}{\partial x} \left[k_{31}^x \frac{\partial u_w}{\partial x} + k_{32}^x \frac{\partial u_w}{\partial x} + k_{33}^x \frac{\partial u_a}{\partial x} \right] + \frac{\partial}{\partial y} \left[k_{31}^y \frac{\partial u_w}{\partial y} + k_{32}^y \frac{\partial u_w}{\partial y} + k_{33}^y \frac{\partial u_a}{\partial y} \right] = \\
\frac{g \omega_a}{R(273.15 + T)} \left((\theta_a) \frac{\partial u_a}{\partial t} + (u_a + u_{atm}) \frac{\partial}{\partial t} (\theta_a) - \frac{(\theta_a)(u_a + u_{atm})}{273.15 + T} \right)
\]

\[
k_{11}^x = \frac{k_x^w + k_{11}^w}{\gamma_w} , \quad k_{12}^x = k_{12}^w + k_{12}^v , \quad k_{13}^x = -\frac{k_{13}^v}{\gamma_w} ,
\]

\[
k_{11}^y = \frac{k_y^w + k_{11}^v}{\gamma_w} , \quad k_{12}^y = k_{12}^v + k_{12}^v , \quad k_{13}^y = -\frac{k_{13}^v}{\gamma_w} ,
\]

\[
k_{21}^x = \frac{L_f k_x^w + L_n k_{11}^w}{\gamma_w} , \quad k_{22}^x = \lambda_x + L_n k_{12}^w + L_f k_{13}^w , \quad k_{23}^x = \frac{L_n k_{13}^w}{\gamma_w} ,
\]

\[
k_{21}^y = \frac{L_f k_y^w + L_n k_{12}^v}{\gamma_w} , \quad k_{22}^y = \lambda_y + L_n k_{12}^v + L_f k_{13}^v , \quad k_{23}^y = \frac{L_n k_{13}^v}{\gamma_w} ,
\]

\[
k_{31}^x = \frac{\gamma_a H c k_x^w}{\gamma_w} , \quad k_{32}^x = 0 , \quad k_{33}^x = k_x^a ,
\]

\[
k_{31}^y = \frac{\gamma_a H c k_y^w}{\gamma_w} , \quad k_{32}^y = 0 , \quad k_{33}^y = k_y^a ,
\]

\[
k_{LT}^x = m_2^\theta k_x^w , \quad k_{LT}^y = m_2^\theta k_y^w ,
\]

- **Axis-Symmetric**

\(h: \)
\[
\frac{\partial}{\partial r} \left[k_{11}^r \frac{\partial (u_w)}{\partial r} + k_{12}^r \frac{\partial (u_a)}{\partial r} \right] + \frac{k_{11}^r}{r} \frac{\partial u_w}{\partial r} + k_{12}^r \frac{\partial u_a}{\partial r} + k_{13}^r \frac{\partial u_a}{\partial r} \\
+ \frac{\partial}{\partial z} \left[k_{11}^z \frac{\partial (u_w)}{\partial z} + k_{12}^z \frac{\partial (u_a)}{\partial z} \right] + \frac{k_{11}^z}{r} \frac{\partial u_w}{\partial r} + k_{12}^z \frac{\partial u_a}{\partial r} + k_{13}^z \frac{\partial u_a}{\partial r} + S_{\sin k} = \frac{\partial \theta_a}{\partial t} + \frac{\rho_l}{\rho_w} \frac{\partial \theta_l}{\partial t}
\]
\[T : \]
\[\frac{\partial}{\partial r} \left[k^{r}_{21} \frac{\partial (u_w)}{\partial r} + k^{r}_{22} \frac{\partial T}{\partial r} + k^{r}_{23} \frac{\partial u_a}{\partial r} \right] + \frac{\partial}{\partial z} \left[k^{z}_{21} \frac{\partial (u_w)}{\partial y} + k^{z}_{22} \frac{\partial T}{\partial z} + k^{z}_{23} \frac{\partial u_a}{\partial z} \right] + \frac{k^{r}_{11}}{r} \frac{\partial u_w}{\partial r} + \frac{k^{r}_{12}}{r} \frac{\partial T}{\partial r} + \frac{k^{r}_{13}}{r} \frac{\partial u_a}{\partial r} + \frac{k^{z}_{11}}{r} \frac{\partial u_w}{\partial z} + \frac{k^{z}_{12}}{r} \frac{\partial T}{\partial z} + \frac{k^{z}_{13}}{r} \frac{\partial u_a}{\partial z} + \frac{k^{r}_{21}}{r} \frac{\partial u_w}{\partial r} + \frac{k^{r}_{22}}{r} \frac{\partial T}{\partial r} + \frac{k^{r}_{23}}{r} \frac{\partial u_a}{\partial r} + \frac{k^{z}_{21}}{r} \frac{\partial u_w}{\partial z} + \frac{k^{z}_{22}}{r} \frac{\partial T}{\partial z} + \frac{k^{z}_{23}}{r} \frac{\partial u_a}{\partial z} + L_f k^{r}_w \]
\[- \left(C_w q_r^L + C_v q_r^v + C_d q_r^a \right) \frac{\partial T}{\partial r} - \left(C_w q_z^L + C_v q_z^v + C_d q_z^a \right) \frac{\partial T}{\partial z} + Q \sin k \]
\[= \left(C + L_f m^w_2 + L_v m^L_2 \right) \frac{\partial T}{\partial t} - L_v m^w_2 \frac{\partial (u_a - u_w)}{\partial t} \]

\[U_a : \]
\[\frac{\partial}{\partial r} \left[k^{r}_{31} \frac{\partial u_w}{\partial r} + k^{r}_{32} \frac{\partial T}{\partial r} + k^{r}_{33} \frac{\partial u_a}{\partial r} \right] + \frac{\partial}{\partial z} \left[k^{z}_{31} \frac{\partial u_w}{\partial z} + k^{z}_{32} \frac{\partial T}{\partial z} + k^{z}_{33} \frac{\partial u_a}{\partial z} \right] + \frac{k^{r}_{11}}{r} \frac{\partial u_w}{\partial r} + \frac{k^{r}_{12}}{r} \frac{\partial T}{\partial r} + \frac{k^{r}_{13}}{r} \frac{\partial u_a}{\partial r} + \frac{k^{z}_{11}}{r} \frac{\partial u_w}{\partial z} + \frac{k^{z}_{12}}{r} \frac{\partial T}{\partial z} + \frac{k^{z}_{13}}{r} \frac{\partial u_a}{\partial z} + \gamma_a \left(k^{a}_w + H_c k^{v}_w \right) \]
\[= \frac{g \omega_a}{R(273.15 + T)} \left[\left(\theta_a \right) \frac{\partial u_a}{\partial t} + \left(\theta_{atm} \right) \frac{\partial u_a}{\partial t} - \left(\theta_a \right) \frac{u_a + u_{atm}}{273.15 + T} \frac{\partial T}{\partial t} \right] \]

\[k^{r}_{11} = \frac{k^{r}_w + k^{v}_h}{\gamma_w}, \quad k^{r}_{12} = k^{LT}_r + k^{v}_T, \quad k^{r}_{13} = -\frac{k^{v}_h}{\gamma_w}, \]
\[k^{z}_{11} = \frac{k^{z}_w + k^{v}_h}{\gamma_w}, \quad k^{z}_{12} = k^{LT}_z + k^{v}_T, \quad k^{z}_{13} = -\frac{k^{v}_h}{\gamma_w}, \]
\[k^{r}_{21} = \frac{L_f k^{r}_r + L_v k^{v}_h}{\gamma_w}, \quad k^{r}_{22} = \lambda_r + L_v k^{v}_T + L_f k^{LT}_r, \quad k^{r}_{23} = -\frac{L_v k^{v}_h}{\gamma_w}, \]
\[k^{z}_{21} = \frac{L_f k^{z}_r + L_v k^{v}_h}{\gamma_w}, \quad k^{z}_{22} = \lambda_z + L_v k^{v}_T + L_f k^{LT}_r, \quad k^{z}_{23} = -\frac{L_v k^{v}_h}{\gamma_w}, \]
\[k^{r}_{31} = \frac{\gamma_a H_c r}{\gamma_w}, \quad k^{r}_{32} = 0, \quad k^{r}_{33} = k^{a}_r, \]
\[k^{z}_{31} = \frac{\gamma_a H_c z}{\gamma_w}, \quad k^{z}_{32} = 0, \quad k^{z}_{33} = k^{a}_z, \]
\[k^{LT}_r = m^g_2 \frac{k^{w}_r}{\gamma_w}, \quad k^{LT}_z = m^g_2 \frac{k^{w}_z}{\gamma_w} \]

3D

\[h : \]
\[\frac{\partial}{\partial x} \left[k^{x}_{11} \frac{\partial (u_w)}{\partial x} + k^{x}_{12} \frac{\partial T}{\partial x} + k^{x}_{13} \frac{\partial u_a}{\partial x} \right] + \frac{\partial}{\partial y} \left[k^{y}_{11} \frac{\partial (u_w)}{\partial y} + k^{y}_{12} \frac{\partial T}{\partial y} + k^{y}_{13} \frac{\partial u_a}{\partial y} \right] + \frac{\partial}{\partial z} \left[k^{z}_{11} \frac{\partial (u_w)}{\partial z} + k^{z}_{12} \frac{\partial T}{\partial z} + k^{z}_{13} \frac{\partial u_a}{\partial z} \right] + S_{\sin k} \frac{\partial u_a}{\partial t} + \rho_l \frac{\partial \theta_a}{\partial t} \]
\[
T: \quad \frac{\partial}{\partial x} \left(k_x^w \frac{\partial u_w}{\partial x} + k_{\phi}^w \frac{\partial T}{\partial x} + k_{\phi}^a \frac{\partial u_a}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y^w \frac{\partial u_w}{\partial y} + k_{\phi}^w \frac{\partial T}{\partial y} + k_{\phi}^a \frac{\partial u_a}{\partial y} \right) + \frac{\partial}{\partial z} \left[k_z^w \frac{\partial u_w}{\partial z} + k_{\phi}^w \frac{\partial T}{\partial z} + k_{\phi}^a \frac{\partial u_a}{\partial z} \right]
\]
\[
- \left(C_w q_x^L + C_v q_x^y + C_a q_x^a \right) \frac{\partial T}{\partial x} - \left(C_w q_y^L + C_v q_y^y + C_a q_y^a \right) \frac{\partial T}{\partial y}
\]
\[
- \left(C_w q_z^L + C_v q_z^y + C_a q_z^a \right) \frac{\partial T}{\partial z} + Q_{\text{sink}} = \left(C + L_f m_1^2 + L_a m_2^2 \right) \frac{\partial T}{\partial t} - L_v m_1^w \frac{\partial (u_a - u_w)}{\partial t}
\]

\[
u_a: \quad \frac{\partial}{\partial x} \left[\frac{k_x^w + k_{\phi}^w}{\gamma_w} \right] \frac{\partial u_a}{\partial x} + \frac{\partial}{\partial y} \left[\frac{k_y^w + k_{\phi}^w}{\gamma_w} \right] \frac{\partial u_a}{\partial y} + \frac{\partial}{\partial z} \left[\frac{k_z^w + k_{\phi}^w}{\gamma_w} \right] \frac{\partial u_a}{\partial z}
\]
\[
g \omega_a \left[\frac{\theta_a}{R(273.15 + T)} \right] = \frac{(\theta_a)}{\gamma_w} \frac{(u_a + u_{\text{atm}})}{\partial t} - \frac{(\theta_a)\gamma_w}{273.15 + T} \frac{\partial T}{\partial t}
\]

\[
k_{11}^x = \frac{k_x^w + k_{\phi}^w}{\gamma_w}, \quad k_{12}^x = k_{LT}^x + k_{\phi}^{VT}, \quad k_{13}^x = -\frac{k_{\phi}^{VT}}{\gamma_w},
\]
\[
k_{11}^y = \frac{k_y^w + k_{\phi}^w}{\gamma_w}, \quad k_{12}^y = k_{LT}^y + k_{\phi}^{VT}, \quad k_{13}^y = -\frac{k_{\phi}^{VT}}{\gamma_w},
\]
\[
k_{11}^z = \frac{k_z^w + k_{\phi}^w}{\gamma_w}, \quad k_{12}^z = k_{LT}^z + k_{\phi}^{VT}, \quad k_{13}^z = -\frac{k_{\phi}^{VT}}{\gamma_w},
\]
\[
k_{21}^x = \frac{L_f k_x^w + L_v k_{\phi}^w}{\gamma_w}, \quad k_{22}^x = \lambda_x + L_v k_{\phi}^{VT}, \quad k_{23}^x = -\frac{L_v k_{\phi}^{VT}}{\gamma_w},
\]
\[
k_{21}^y = \frac{L_f k_y^w + L_v k_{\phi}^w}{\gamma_w}, \quad k_{22}^y = \lambda_y + L_v k_{\phi}^{VT}, \quad k_{23}^y = -\frac{L_v k_{\phi}^{VT}}{\gamma_w},
\]
\[
k_{21}^z = \frac{L_f k_z^w + L_v k_{\phi}^w}{\gamma_w}, \quad k_{22}^z = \lambda_z + L_v k_{\phi}^{VT}, \quad k_{23}^z = -\frac{L_v k_{\phi}^{VT}}{\gamma_w},
\]
\[
k_{31}^x = \frac{\gamma_a H_{\phi} k_x^w}{\gamma_w}, \quad k_{32}^x = 0, \quad k_{33}^x = k_x^a,
\]
\[
k_{31}^y = \frac{\gamma_a H_{\phi} k_y^w}{\gamma_w}, \quad k_{32}^y = 0, \quad k_{33}^y = k_y^a,
\]
\[
k_{31}^z = \frac{\gamma_a H_{\phi} k_z^w}{\gamma_w}, \quad k_{32}^z = 0, \quad k_{33}^z = k_z^a,
SoilVision Systems Ltd.

Coupled Equations of Moisture Flow, Air Flow and Heat Flow

where:

\[u_w = \text{pore water pressure due to hydraulic head, kPa}, \]

\[u_a = \text{pore air pressure, kPa}, \]

\[T = \text{temperature, } ^\circ\text{C}, \]

\[k_w^x, k_w^y, k_w^z, k_r^w = \text{hydraulic conductivity in } x, y, z, \text{ or } r \text{-direction, m/s. For a homogenous material, } k = k_w^x = k_w^y = k_w^z = k_r^w, \]

\[k_v^m = \text{pore-water vapor conductivity by vapor diffusion within the air phase, as defined in equation [47], m/s}, \]

\[k_v^T = \text{pore-water vapor conductivity induced by temperature gradient, as defined in equation [48], m/s}, \]

\[k_L^T = \text{hydraulic conductivity introduced by the temperature gradient, m/s}, \]

\[k_x^a, k_y^a, k_z^a, k_r^a = \text{air conductivity of the soil in the } x, y, z, \text{ or } r \text{-direction, m/s. For a homogenous material, } k_x^a = k_y^a = k_z^a = k_r^a, \]

\[\lambda_x, \lambda_y, \lambda_z, \lambda_r = \text{thermal conductivity of the soil in the } x, y, z, \text{ or } r \text{-direction, J/(s-m-}^\circ\text{C)}, \]

\[\lambda_x = \lambda_y = \lambda_z = \lambda_r, \] for a homogenous material,

\[q_x^L, q_y^L, q_z^L, q_r^L = \text{pore-water flow rate (Darcian velocity) in the } x, y, z, \text{ or } r \text{-direction across a unit area of the soil due to hydraulic head gradients defined in equation [27], m/s}, \]

\[q_x^v, q_y^v, q_z^v, q_r^v = \text{pore-water vapor flow rate (Darcian velocity) in the } x, y, z, \text{ or } r \text{-direction across a unit area of the soil due to vapor diffusion defined in equation [46], m/s}, \]

\[q_x^a, q_y^a, q_z^a, q_r^a = \text{pore-air flow velocity (Darcian velocity) in the } x, y, z, \text{ or } r \text{-direction across a unit area of the soil due to air pressure gradient defined in equation [66], m/s}, \]

\[\theta_u = \text{volumetric unfrozen water content (including liquid and vapor) of the soil that is determined by soil freezing characteristic curve, m}^3/\text{m}^3, \]

\[\theta_i = \text{volumetric ice content of the soil defined in equation [71], m}^3/\text{m}^3, \]

\[\theta_v = \text{volumetric pore-water vapor content of the defined in equation [39], m}^3/\text{m}^3, \]

\[\gamma_w = \text{unit weight of water, kN/m}^3, \]

\[\gamma_a = \text{unit of air weight, kN/m}^3, \gamma_a = g \rho_a/\rho_u, \]

\[\rho_a = \text{air density, kg/m}^3, \]

\[C_u = \text{unit conversion coefficient, } C_u = 1000 \text{ for Metric, and } C_u = 1 \text{ for Imperial}, \]

\[n = \text{porosity, dimensionless}, \]

\[H_c = \text{Henry’s volumetric coefficient of air solubility in the water, m}^3/\text{m}^3, \]

\[\omega_a = \text{average molecular weight of air 0.0288 kg/mol}, \]

\[g = \text{acceleration due to gravity, } 9.81 \text{ m/s}^2, \]

\[R = \text{universal gas constant, 8.3144 J/mol-K}, \]

\[L_v = \text{volumetric latent heat of water vaporization, J/ m}^3, \text{ as defined in equation [62],} \]
\(L_f \) = volumetric latent heat of water freezing or thawing, \(J/m^3 \), as defined in equation [63],
\(C_a \) = volumetric heat capacity of dry air, \(J/(m^3\cdot\degree C) \),
\(C_w \) = volumetric heat capacity of water, \(J/(m^3\cdot\degree C) \),
\(C_v \) = volumetric heat capacity of water vapour, \(J/(m^3\cdot\degree C) \),
\(C \) = volumetric heat capacity of a material, calculated with equation [53], \(J/(m^3\cdot\degree C) \),
\(m_{2l} \) = slope of soil Freezing characteristic curve,
\(m_{2\phi} \) = slope of the relation of soil matric suction to the soil temperature, \(kPa/\degree C \),
\(Q_{sink} \) = heat source or sink, \(J/s-m^3 \),
\(m_{2v} \) = defined in equation [60], and
\(m_{2vh} \) = defined in equation [61].
4 MATERIAL THERMAL PROPERTIES

Thermal conductivity, heat capacity, and soil freezing characteristic curve (SFCC) are three major thermal properties in heat transfer during the soil freezing and thawing process. The thermal conductivity of ice is almost 4 times higher than water, but water has a higher value of heat capacity than ice. The ice content in a frozen soil depends on both volumetric water content in unfrozen soil, and unfrozen water content in frozen soil. The unfrozen water content is uniquely determined by soil freezing characteristic curve. The following sections describe how to estimate or calculate the thermal conductivity, heat capacity, and SFCC.

4.1 THERMAL CONDUCTIVITY CURVE

The three main factors affecting the thermal conductivity of a material include 1) the thermal conductivity of constituent material, 2) the fraction of the material volume each material represents, and 3) the “connectedness” of each of the constituent materials. The “connectedness” refers to the completeness of paths that are available for movement of heat through a material Pentland (2000). Heat is conducted to individual soil particles through discrete contact points, as the area of these discrete points increases the conductivity of the soil increases. Therefore, as the "connectedness" increases, so does the thermal conductivity.

4.1.1 Johansen Approach (1973)

The Johansen (1973) and Farouki, (1981) approach has been used widely to calculate thermal conductivity based on soil state, type, fraction of soil components, and thermal conductivity of water, ice, and solid components. It is recommended to use this method to estimate soil thermal conductivity, especially in a coupled seepage and heat model, where ice content in the frozen soil is changeable due to moisture migration. The Johansen method is applicable for both unfrozen and frozen soils. The method is based on dry and saturated thermal conductivity at a given dry density as follows:

- **Fine and Coarse Soils**

\[\lambda = (\lambda_{\text{sat}} - \lambda_{\text{dry}}) \lambda_{e} + \lambda_{\text{dry}} \] \[235\]

where

- \(\lambda \) = soil thermal conductivity, J/s-m-°C,
- \(\lambda_{\text{sat}} \) = the saturated thermal conductivity, J/s-m-°C,
- \(\lambda_{\text{dry}} \) = the thermal conductivity of dry soil, J/s-m-°C, and
- \(\lambda_{e} \) = the Kerstern number (normalized thermal conductivity), which is related to saturation.

\[\lambda_{\text{dry}} = \frac{0.135 \gamma_d + 64.7}{2700 - 0.947 \gamma_d} \pm 20\%, \text{ for dry nature soils} \] \[236\]

\[\lambda_{\text{dry}} = 0.039 n^{-2.2}, \text{ for dry crushed rock materials} \] \[237\]

\[\lambda_{\text{sat}} = (\lambda_s)^{1-n}(\lambda_w)^n, \text{ for saturated unfrozen soil} \] \[238\]
\[\lambda_{sat} = (\lambda_s)^{1-n} (\lambda_i)^{n-w_u} (\lambda_w)^{w_u}, \]
for saturated frozen soil \[\text{[239]} \]

\[\lambda_s = 7.7^q (2.0)^{1-q} \text{ if } q > 0.20 \]
\[\lambda_s = 7.7^q (3.0)^{1-q} \text{ if } q \leq 0.20 \]
\[\text{[240]} \]

\[\lambda_e = 0.7\log(S_r) + 1.0, \text{ for unfrozen coarse grained soil} \]
\[\text{[241]} \]

\[\lambda_e = \log(S_r) + 1.0, \text{ for unfrozen fine grained soil} \]
\[\text{[242]} \]

\[\lambda_e = S_r, \text{ for frozen soil} \]
\[\text{[243]} \]

where:

- \(\gamma_d \) = dry density of soil, kg/m³,
- \(n \) = soil porosity,
- \(\lambda_s \) = thermal conductivity of soil particles, J/s·m·°C,
- \(q \) = quartz content,
- \(\lambda_w \) = thermal conductivity of water, J/s·m·°C,
- \(\lambda_i \) = thermal conductivity of ice, J/s·m·°C
- \(w_u \) = volumetric unfrozen water content, m³/m³, and
- \(S_r \) = soil saturation.

Peaty Soils (Peats)

Generally, peat has a lower thermal conductivity than other mineral soils (fine and coarse soils). The portion of water and ice have a major influence on the thermal properties of peats. Water content in peats can be as high as 2100% (Pihlainen, 1963, cited in Farouki, 1981). Frozen thermal conductivity of peats is usually about four times larger than unfrozen thermal conductivity, which is similar to the ratio between water and ice. Thermal conductivity equations are:

Unfrozen peat

\[\sqrt{\lambda} - \sqrt{\lambda_{dry}} = S_r \left(\sqrt{\lambda_{sat(f)}} - \sqrt{\lambda_{dry}} \right) \]
\[\text{[244]} \]

Frozen peat

\[\lambda = \lambda_{dry} \left(\frac{\lambda_{sat(f)}}{\lambda_{dry}} \right)^{S_r} \]
\[\text{[245]} \]

These equations are a result of fitting Kersten’s measured data (Kersten, 1949). By combining these equations with equation \[\text{[235]} \], the resulting equations are the relation between the Kerstern number and degree of saturation (Cote and Conrad, 2005):

Unfrozen peat

\[\lambda_e = 0.54 S_r^2 + 0.46 S_r \]
\[\text{[246]} \]

Frozen peat
\[\lambda_e = 0.029 (36S_e - 1) \]

The inputs for calculating peat thermal conductivity are \(\lambda_{dry} \), \(\lambda_{sat(u)} \), and \(\lambda_{sat(f)} \). Johansen suggested values for these inputs of 0.05, 0.55, and 1.8 W/m\(^\circ\)C for \(\lambda_{dry} \), \(\lambda_{sat(u)} \), and \(\lambda_{sat(f)} \), respectively.

Table 1 is the thermal conductivity of some common materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity (J/s(\cdot)m(\cdot)°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>8.8</td>
</tr>
<tr>
<td>Clay Minerals</td>
<td>2.9</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>0.25</td>
</tr>
<tr>
<td>Water</td>
<td>0.57</td>
</tr>
<tr>
<td>Ice</td>
<td>2.2</td>
</tr>
<tr>
<td>Air</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Table 2 lists the quartz content \(q \) for the common soils:

<table>
<thead>
<tr>
<th>Chinese Soil (Lu et al., 2007)</th>
<th>Kersten’s soil (Tarnawski et al., 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil name</td>
<td>Quartz content (%)</td>
</tr>
<tr>
<td>Sand 1</td>
<td>75</td>
</tr>
<tr>
<td>Sand 2</td>
<td>53</td>
</tr>
<tr>
<td>Sandy loam 3</td>
<td>65</td>
</tr>
<tr>
<td>Loam 4</td>
<td>54</td>
</tr>
<tr>
<td>Loam 11</td>
<td>56</td>
</tr>
<tr>
<td>Silt loam 5</td>
<td>49</td>
</tr>
<tr>
<td>Silt loam 6</td>
<td>60</td>
</tr>
<tr>
<td>Silty clay loam 7</td>
<td>34</td>
</tr>
<tr>
<td>Silty clay loam 8</td>
<td>33</td>
</tr>
<tr>
<td>Clay loam 9</td>
<td>39</td>
</tr>
<tr>
<td>Lowell sand</td>
<td>77</td>
</tr>
<tr>
<td>Northway fine sand</td>
<td>23</td>
</tr>
<tr>
<td>Northway sand</td>
<td>5.0</td>
</tr>
<tr>
<td>Fairbanks sand</td>
<td>84</td>
</tr>
<tr>
<td>Dakota sandy loam</td>
<td>73</td>
</tr>
<tr>
<td>Ramsey sandy loam</td>
<td>53</td>
</tr>
<tr>
<td>Northway silt loam</td>
<td>2.0</td>
</tr>
<tr>
<td>Fairbanks silt loam</td>
<td>40</td>
</tr>
<tr>
<td>Fairbanks silty clay loam</td>
<td>28</td>
</tr>
<tr>
<td>Healy clay</td>
<td>31</td>
</tr>
</tbody>
</table>

Tarnawski et al., 2009 analyzed the relationship between the quartz content and the contents of sand and gravel, as shown in Figure 4. The quartz content can be estimated with the following expression:

\[q = 0.339 + 0.417m_{co} \]

where:

- \(q \) = quartz content, and
- \(m_{co} \) = contents of sand and gravel.
Figure 4 Relationship between quartz content and sand and gravel contents

The thermal conductivity for ice is related to the temperature. According to the data presented in the website http://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html, the ice thermal conductivity can be approximated with the following data fitting equation:

\[
\lambda_i = 2.1932 - 0.0097T + 0.00003T^2
\]

where:
\[\lambda_i\] = ice thermal conductivity, \(w/m\cdot^\circ C\), and
\[T\] = ice temperature, \(^\circ C\).

The comparison of measured data with the calculation of ice thermal conductivity with the equation is illustrated in Figure 5.

Figure 6 is the Johansen model prediction of thermal conductivity as the function of temperature and volumetric water content for sand. Due to the ice existence in the frozen soil, the thermal conductivity of frozen soils has larger values than the conductivity of unfrozen soil. Figure 7 and Figure 8 demonstrate the calculation of thermal conductivity for sand and clay loam changing with the water content and dry density. It can be seen from the Figure 8 that Johansen model cannot predict the thermal conductivity at the very low water content, because the Kerstern number, \(\lambda_e\), is negative in that case.
Figure 5 Temperature effect on the ice thermal conductivity

Figure 6 Thermal conductivity calculated with Johansen approach at different temperatures and volumetric water contents for sand (quartz content = 74 %)
Figure 7 Thermal conductivity calculated with Johansen approach at different volumetric water contents and dry densities for sand (quartz content = 74 %)

Figure 8 Thermal conductivity calculated with Johansen approach at different volumetric water contents and dry densities for clay loam (quartz content = 36 %)
4.1.2 Improved Johansen – Lu et al., (2007)

Lu et al., (2007) improved the Johansen model in the calculation of dry thermal conductivity, λ_{dry}, (i.e. equation [236]), and the Kerstern number, λ_e, (i.e. equation [241] or equation [242]). The main limitation of Johansen model is that the Kerstern number, λ_e, will be negative for a soil having very low degrees of water saturation. The improved equation [250] is used to describe the Kerstern number, λ_e, in the Lu et al., (2007) model:

$$\lambda_e = \text{Exp}\left\{\beta\alpha - S_r(\alpha - \beta)\right\}, \text{ for the unfrozen soil}$$ \[250\]

where:

- α = parameter related to soil texture. $\alpha = 0.96$ for the coarse soil, and $\alpha = 0.27$ for the fine soil,
- β = shape parameter, $\beta = 1.33$, and
- S_r = the degree of water saturation.

The dry thermal conductivity, λ_{dry}, is expressed as a linear expression:

$$\lambda_{dry} = -0.56n + 0.51$$ \[251\]

where:

- n = porosity of soil.

In the above model, the value for the parameters of α and β are obtained according to the sand content of a soil. The calculation of thermal conductivity for sand is over predicted if using sand content (Lu et al., 2007). Tarnawski et al., (2009) analyzed the effect of quartz content on the prediction of the thermal conductivity using the Lu et al., (2007) model. Based on the quartz content, the following values for the parameter α and β are obtained:

<table>
<thead>
<tr>
<th>Table 3 Values of parameter α and β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Type</td>
</tr>
<tr>
<td>Coarse</td>
</tr>
<tr>
<td>Fine</td>
</tr>
</tbody>
</table>

SVHEAT implements Lu et al., (2007) model based on the values as given in Table 3.

As indicated in the Figure 10, the Lu et al., (2007) model has improved the prediction of thermal conductivity at the very low water content compared to the Johansen model (see Figure 8).
Figure 9 Thermal conductivity calculated with Lu et al approach at different volumetric water contents and dry densities for sand (quartz content = 74 %)

Figure 10 Thermal conductivity calculated with Lu et al approach at different volumetric water contents and dry densities for clay loam (quartz content = 36 %)
4.1.3 De Vries Approach (1963)

De Vries (1963) reviewed some of the formulas by which the thermal conductivity of soil is estimated based on the fraction and thermal conductivity of its constituents. The De Vries model (Tang et al., 2008) is expressed as:

\[
\lambda_{\text{unfrozen}} = \frac{\theta_w \lambda_w + F_a (n - \theta_w) \lambda_a + F_s (1-n) \lambda_s}{\theta_w + F_a (n - \theta_w) + F_s (1-n)}
\]

\[
\lambda_{\text{frozen}} = \frac{\theta_i \lambda_i + \theta_u \lambda_w + F_a (n - \theta_w) \lambda_a + F_s (1-n) \lambda_s}{\theta_w + F_a (n - \theta_w) + F_s (1-n)}
\]

\[
F_a = \frac{1}{3} \left\{ \frac{2}{1 + g_a \left(\frac{\lambda_a}{\lambda_w} - 1 \right)} + \frac{1}{1 + g_c \left(\frac{\lambda_a}{\lambda_w} - 1 \right)} \right\}
\]

\[
F_s = \frac{1}{3} \left\{ \frac{2}{1 + 0.125 \left(\frac{\lambda_s}{\lambda_w} - 1 \right)} + \frac{1}{1 + 0.75 \left(\frac{\lambda_s}{\lambda_w} - 1 \right)} \right\}
\]

\[
g_a = 0.035 + 0.298 S_r
\]

\[
g_c = 1 - 2g_a
\]

where:

\(\lambda_{\text{unfrozen}} \) = the thermal conductivity of unfrozen soil, \(J/s \cdot m \cdot ^\circ C \),

\(\lambda_{\text{frozen}} \) = the thermal conductivity of frozen soil, \(J/s \cdot m \cdot ^\circ C \),

\(\lambda_w \) = thermal conductivity of water, \(J/s \cdot m \cdot ^\circ C \),

\(\lambda_a \) = thermal conductivity of air, \(J/s \cdot m \cdot ^\circ C \),

\(\lambda_s \) = thermal conductivity of solid particles, \(J/s \cdot m \cdot ^\circ C \),

\(\lambda_i \) = thermal conductivity of ice, \(J/s \cdot m \cdot ^\circ C \),

\(\theta_w \) = volumetric water content, \(m^3/m^3 \),

\(\theta_i \) = volumetric ice content, \(m^3/m^3 \),

\(\theta_u \) = volumetric unfrozen water content, \(m^3/m^3 \), and

\(S_r \) = degree of water saturation.

The unfrozen water content is determined by the approaches as described in the section of SFCC.

Figure 11 and Figure 12 illustrate the thermal conductivity predicted with the De Vries model for the sand and clay loam.
Figure 11 Thermal conductivity calculated with De Vries approach at different volumetric water contents and dry densities for sand (quartz content = 74 %)

Figure 12 Thermal conductivity calculated with De Vries approach at different volumetric water contents and dry densities for clay loam (quartz content = 36 %)
4.1.4 Côté and Konrad (2005)

Côté and Konrad (2005) study were based on nearly 200 experimental samples of thermal conductivity measurements and they proposed a generalized method to calculate thermal conductivity. The main point of this method is the relation between normalized thermal conductivity (or the Kerstern number in section 4.1.1) and the degree of saturation for different soil types and textures. This method is based on the normalized thermal conductivity concept shown in [235].

\[\lambda_c = \frac{\kappa S_r}{1 + (\kappa - 1)S_r} \] \[255 \]

where

\(\kappa \) = an empirical parameters accounting for soil types shown in Table 4.

Other parameters in the above equation were defined in section 4.1.1.

The thermal conductivity of dry soil is determined using the following equation.

\[\lambda_{dry} = \chi \times 10^{-\eta n} \] \[256 \]

where

\(\chi \) = an empirical value accounting for soil types, W/m\(^{-\circ}\)C (Table 5)

\(\eta \) = an empirical constant (Table 5).

\(n \) = soil porosity

<table>
<thead>
<tr>
<th>Material</th>
<th>Unfrozen</th>
<th>Frozen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravels and coarse sands</td>
<td>4.60</td>
<td>1.70</td>
</tr>
<tr>
<td>Medium and fine sands</td>
<td>3.55</td>
<td>0.95</td>
</tr>
<tr>
<td>Silty and clayey soils</td>
<td>1.90</td>
<td>0.85</td>
</tr>
<tr>
<td>Organic fibrous soils (peat)</td>
<td>0.60</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>(\chi) (W/m(^{-\circ})C)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed rock and gravels</td>
<td>1.70</td>
<td>1.80</td>
</tr>
<tr>
<td>Natural mineral soils</td>
<td>0.75</td>
<td>1.20</td>
</tr>
<tr>
<td>Organic fibrous soils (peat)</td>
<td>0.30</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Figure 13 Thermal conductivity of crushed granite calculated with Côté and Konrad (2005) method with $\lambda_s = 2.69$ W/m·°C, $n = 0.29$.

Figure 14 Thermal conductivity of Lowell sand calculated with Côté and Konrad (2005) method with $\lambda_s = 5.5$ W/m·°C, $n = 0.37$.
Figure 15 Thermal conductivity of Fairbanks peat calculated with Côté and Konrad (2005) method with $\lambda_s = 0.25 \text{ W/m}^\circ\text{C}$, $n = 0.78$.

4.1.5 Comparison of Thermal Conductivity Calculated with Johansen, Lu et al., and De Vries Approach

Lu et al., (2007) presented the experimental data of thermal conductivity for different soils in laboratory. The calculated thermal conductivity with Johansen, Lu et al. (2007), and De Vries (1963) methods are compared in the Figure 13 for metric units and the Figure 14 for imperial units.

It can be seen from the figures below that the Johansen and Lu et al., (2007), approach is very similar, but Lu et al., (2007) approach can predict the thermal conductivity changing with the full range of water content. The De Vries (1963) approach can predict thermal conductivity at the mediate water content.

NOTE: SVHEAT recommends Lu et al., (2007) or Johansen approach to estimate the thermal conductivity.
Figure 16 Comparison of thermal conductivity calculated with different approaches for unfrozen soils in metric units (experimental data from Lu et al., 2007)
Thermal conductivity may be provided with experimental data as a function of soil temperature. SVHEAT implements thermal conductivity curves through the use of table files. A table file is created using two columns of data, temperature versus thermal conductivity. The SVHEAT solver uses linear interpolation to estimate thermal conductivities between data points. Therefore, including more points will minimize the error in the estimation between points. As a general rule, it is good to use at least ten points to describe each thermal conductivity curve.

Below is a typical thermal conductivity curve. It can be seen that as the material freezes the thermal conductivity increases. This is due to the large difference between the thermal conductivity of water and ice.
Figure 18 Typical thermal conductivity curve

Figure 16 to Figure 21 are the measured thermal conductivity for different soils at the different water contents. Table 4 lists the thermal conductivity for the common materials.

Figure 19 Average thermal conductivity for frozen sands and gravel (Note: Thermal conductivity in Btu/ft²-hr-°F-ft, from U.S. Army Corps of Engineers)
Figure 20 Average thermal conductivity for unfrozen sand and gravels (Note: Thermal conductivity in Btu/ft²-hr-°F-ft, from U.S. Army Corps of Engineers)

Figure 21 Average thermal conductivity for frozen silt and clay soils (Note: Thermal conductivity in Btu/ft²-hr-°F-ft, from U.S. Army Corps of Engineers)
Figure 22 Average thermal conductivity for unfrozen silt and clay soils (Note: Thermal conductivity in Btu/ft²·hr·°F-ft, from U.S. Army Corps of Engineers)

Figure 23 Thermal conductivity for frozen peat (from U.S. Army Corps of Engineers)
Table 6 Thermal conductivity for the common materials

<table>
<thead>
<tr>
<th>Type of material</th>
<th>Description</th>
<th>Unit weight (lb/ft³)</th>
<th>Thermal conductivity (Btu/ft²-hr-°F per in)</th>
<th>Thermal conductivity (Btu/hr-ft-°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt paving Mixture</td>
<td>Mix with 6% by weight cutback asphalt</td>
<td>138</td>
<td>10.3</td>
<td>0.86</td>
</tr>
<tr>
<td>Concrete</td>
<td>With sand and gravel for stone aggregate (oven-dried)</td>
<td>140</td>
<td>9</td>
<td>0.75</td>
</tr>
<tr>
<td>Concrete</td>
<td>With sand and gravel for stone aggregate (not dried)</td>
<td>140</td>
<td>12.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Concrete</td>
<td>With lightweight aggregates,</td>
<td>120</td>
<td>5.2</td>
<td>0.43</td>
</tr>
<tr>
<td>Concrete</td>
<td>With expanded shale, clay, or slate</td>
<td>100</td>
<td>3.6</td>
<td>0.30</td>
</tr>
<tr>
<td>Concrete</td>
<td>With Expended slags, cinders</td>
<td>60</td>
<td>1.7</td>
<td>0.14</td>
</tr>
<tr>
<td>Concrete</td>
<td>With Pumice, perlite</td>
<td>40</td>
<td>1.15</td>
<td>0.096</td>
</tr>
<tr>
<td>Concrete</td>
<td>With vermiculite</td>
<td>30</td>
<td>0.90</td>
<td>0.075</td>
</tr>
<tr>
<td>Cellular concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>Maple, Oak and similar hardwoods</td>
<td>45</td>
<td>1.10</td>
<td>0.092</td>
</tr>
<tr>
<td>Wood</td>
<td>Fir, pine, and similar soft woods</td>
<td>32</td>
<td>0.8</td>
<td>0.067</td>
</tr>
<tr>
<td>Building boards</td>
<td>Asbestos-cement board</td>
<td>120</td>
<td>4.0</td>
<td>0.33</td>
</tr>
<tr>
<td>Building boards</td>
<td>Plywood, fiberboard</td>
<td>34</td>
<td>0.8</td>
<td>0.067</td>
</tr>
<tr>
<td>Building boards</td>
<td>Laminated or homogeneous</td>
<td>26.33</td>
<td>0.42 -</td>
<td>0.035 - 0.046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>Blanket and batt</td>
<td>Wood fiber-hardboard type</td>
<td>65</td>
<td>1.4</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Mineral wool, fibrous form,</td>
<td>1.5 - 4.0</td>
<td>0.27</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Figure 24 Thermal conductivity for unfrozen peat (from U.S. Army Corps of Engineers)
Material Thermal Properties

<table>
<thead>
<tr>
<th>Insulation Type</th>
<th>Material Description</th>
<th>Thermal Conductivity</th>
<th>Density</th>
<th>Water Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board and slab</td>
<td>Cellular glass corkboard (without added binder)</td>
<td>6.5-8.0</td>
<td>0.27</td>
<td>0.022</td>
</tr>
<tr>
<td>Insulation</td>
<td>Glass fiber wood or cane fiber interior finish (plank, tile, lath)</td>
<td>15.0</td>
<td>0.35</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>Expanded polystyrene</td>
<td>1.6</td>
<td>0.29</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>Expanded ureaformal-dyhyde</td>
<td>1.0</td>
<td>0.25</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Expanded perlite</td>
<td>9.5-11.5</td>
<td>0.34</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Polyurethane foam</td>
<td>1.5-3.0</td>
<td>0.34</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mineral wool with resin binder</td>
<td>15.0</td>
<td>0.28</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>Mineral wool with asphalt binder</td>
<td>15.0</td>
<td>0.31</td>
<td>0.026</td>
</tr>
<tr>
<td>Loose fill</td>
<td>Cork, granulated</td>
<td>5-12</td>
<td>0.25-0.36</td>
<td>--</td>
</tr>
<tr>
<td>Insulation</td>
<td>Expanded perlite</td>
<td>3-4</td>
<td>0.28</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mineral wool (glass, slag, or rock)</td>
<td>2-5</td>
<td>0.30</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Sawdust or shavings</td>
<td>8-15</td>
<td>0.45</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>Vermiculite (expanded)</td>
<td>7.0-8.2</td>
<td>0.48</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>Wood fiber: redwood, hemlock or fir</td>
<td>2.0-3.5</td>
<td>0.30</td>
<td>0.025</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Aluminum</td>
<td>168</td>
<td>1416</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>549</td>
<td>2640</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Ductile iron</td>
<td>468</td>
<td>360</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>164</td>
<td>5.5</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Ice</td>
<td>57</td>
<td>15.4</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Snow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow, new, loose</td>
<td>5.3</td>
<td>0.6</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Snow on ground</td>
<td>18.7</td>
<td>1.58</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Snow, drifted and compacted</td>
<td>18.7</td>
<td>1.58</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Steel</td>
<td>487</td>
<td>310</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>Water average</td>
<td>62.4</td>
<td>4.2</td>
<td>0.35</td>
</tr>
</tbody>
</table>

4.1.7 Estimated by Empirical Expression

SVHEAT provides an approach that allows users to specify the empirical expression as a function of temperature or water content.

4.1.8 Thermal Conductivity of Snow

The thermal conductivity of snow is primarily related to the snow density and it is estimated with the Yen equation (Yen, 1969):

\[
\lambda_{sn} = 2.86 \left(\frac{\rho_{sn}}{\rho_{w}} \right)^2
\]

where:
- \(\lambda_{sn} \) = thermal conductivity of snow, J/s\(\cdot\)m\(\cdot\)°C,
- 2.86 = parameter, J/s\(\cdot\)m\(\cdot\)°C,
\[\rho_{sn} = \text{density of snow, } \text{kg/m}^3, \text{ and} \]
\[\rho_w = \text{density of water, } \text{kg/m}^3. \]

The density of snow varies depending on snow age as shown in Figure 22. The data analysis from Figure 22 indicates that the mean density of snow is about 298.66 kg/m³, or 18.64 lb/ft³. Therefore, the mean thermal conductivity calculated with the equation \[255\] is around 0.255 J/s·m·°C.

4.2 VOLUMETRIC HEAT CAPACITY

The capacity for heat storage is made up of two parts. The first part is the volumetric heat capacity of a material. The second part is a term included to account for the energy released or adsorbed due to phase change. In general, it can be expressed as given in equation \[4\]. Please note that the term of heat capacity used in this document is referred to as the first part of volumetric heat capacity. The energy release or absorption in phase change will be discussed in the section of soil freezing characteristic curve (SFCC). The following two sections describe these formulations in detail.

4.2.1 Constant Formulation

The constant method for volumetric heat capacity requires the user to enter frozen and unfrozen volumetric heat capacity.

\[C = C_u \quad \text{if } T > T_{uf} \]
\[C = C_f \quad \text{otherwise} \]
where:

\[T \] = temperature, °C,
\[T_{ef} \] = the temperature at soil freezing point, °C,
\[C \] = volumetric heat capacity, \(J/m^3\cdot°C \),
\[C_u \] = unfrozen volumetric heat capacity, \(J/m^3\cdot°C \), and
\[C_f \] = frozen volumetric heat capacity, \(J/m^3\cdot°C \).

The following table lists the heat capacity of the common materials:

Table 7 Mass specific heat capacity of various materials (U.S. Army Corps of Engineers)

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature (°C)</th>
<th>Specific heat (J/kg·°C)</th>
<th>Temperature (°F)</th>
<th>Specific heat (Btu/lb·°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>-33.00</td>
<td>837.35</td>
<td>-27.4</td>
<td>0.20</td>
</tr>
<tr>
<td>Asbestos fibers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete (avg. stone)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete (dams)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>7.00</td>
<td>837.35</td>
<td>44.6</td>
<td>0.20</td>
</tr>
<tr>
<td>Corkboard</td>
<td>32.78</td>
<td>1214.15</td>
<td>91</td>
<td>0.29</td>
</tr>
<tr>
<td>Cork, granulated</td>
<td>-28.33</td>
<td>1214.15</td>
<td>-19</td>
<td>0.29</td>
</tr>
<tr>
<td>Fiberglas board</td>
<td>43.89</td>
<td>1004.82</td>
<td>111</td>
<td>0.24</td>
</tr>
<tr>
<td>Foamglas</td>
<td>-30.00</td>
<td>795.48</td>
<td>-22</td>
<td>0.19</td>
</tr>
<tr>
<td>Glass block, expanded</td>
<td>44.44</td>
<td>753.61</td>
<td>112</td>
<td>0.18</td>
</tr>
<tr>
<td>Glass sheets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass wool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ice</td>
<td>0.00</td>
<td>2009.63</td>
<td>32</td>
<td>0.48</td>
</tr>
<tr>
<td>iron (alpha)</td>
<td>7.00</td>
<td>460.54</td>
<td>44.6</td>
<td>0.11</td>
</tr>
<tr>
<td>iron (alpha)</td>
<td>7.00</td>
<td>460.54</td>
<td>44.6</td>
<td>0.11</td>
</tr>
<tr>
<td>Masonry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral wool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlite, expanded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ply styrene, cellular foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ployurethane foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sawdust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woods (avg.)</td>
<td>20.00</td>
<td>1381.62</td>
<td>68</td>
<td>0.33</td>
</tr>
<tr>
<td>Woods (fibraboard)</td>
<td>64.44</td>
<td>1423.49</td>
<td>148</td>
<td>0.34</td>
</tr>
</tbody>
</table>

4.2.2 Jame-Newman Formulation

Jame (1977) and Newman (1995) provided a formulation that uses commonly measured values including dry density and volumetric water content for the computation of volumetric heat capacity. The function neglects the specific heat capacity of air, which are orders of magnitude lower than solid, liquid, and ice components.

\[C = \gamma_d \left[c_s + c_w w_u + c_i w_i \right] \]

where:
- \(C \) = volumetric heat capacity, J/m\(^3\)-°C,
- \(\gamma_d \) = dry unit weight of soil, kN/m\(^3\),
- \(C_s \) = mass specific heat of soil solids, J/kg-°C,
- \(C_w \) = mass specific heat of unfrozen water, 4184 J/kg-°C,
- \(c_i \) = mass specific heat of ice, 2100 J/kg-°C,
- \(W_u \) = gravimetric unfrozen water content of the soil, and
- \(W_i \) = gravimetric ice content of the soil.

The volumetric unfrozen water content can be determined by soil freezing characteristic curve. Using volume-mass relations from Fredlund and Rahardjo (1993), the gravimetric water content can be calculated from the volumetric water content as follows:

\[w = \frac{\theta_w \rho_w}{\gamma_d} \]

where:
- \(\rho_w \) = density of water, 1000 kg/m\(^3\),
- \(\theta_w \) = volumetric water content, and
- \(\gamma_d \) = dry unit weight of soil, kN/m\(^3\).

4.2.3 Curve Comparison

The following function describes how energy is stored in a material as temperature changes. A point on the curve describes the amount of energy required to keep the material at a given temperature. The part of the curve that has a steep slope describes the energy loss from the material, as there is a phase change from liquid to ice.
In the constant formulation the user is required to enter the temperature at which the water will change phases from water to ice. In the above figure it can be seen that using constants to describe the volumetric heat capacity in the frozen and unfrozen states causes severe discontinuities at the phase change temperature. Discontinuities such as these may cause convergence problems in finite element solutions. The Jame-Newman formulation has been included with the SVHEAT software to alleviate such convergence problems. The Jame-Newman formulation provides a method for describing the volumetric heat capacity with a smooth transition between the frozen and unfrozen states. In a seepage and heat coupled model, Jame-Newman formula is recommended to estimate heat capacity.

Table 8 Typical values of mass specific heat capacity and density

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
<th>Mass Specific Heat Capacity (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2660</td>
<td>755</td>
</tr>
<tr>
<td>Clay Minerals</td>
<td>2650</td>
<td>755</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>1300</td>
<td>1930</td>
</tr>
<tr>
<td>Water</td>
<td>1000</td>
<td>4184</td>
</tr>
<tr>
<td>Ice</td>
<td>920</td>
<td>2100</td>
</tr>
<tr>
<td>Air</td>
<td>1.25</td>
<td>1000</td>
</tr>
</tbody>
</table>

4.3 SOIL FREEZING CHARACTERISTIC CURVE (SFCC)

As a material freezes, the water within the material does not freeze at a uniform temperature. This phenomenon known to some as freezing point depression is caused due to the formation of ice. Ice formation in materials causes suction. This suction acting on the water phase causes it to remain unfrozen at temperatures below the freezing point. In fine-grained soils, it is possible that water
will remain unfrozen at temperatures of -20 °C. For a given soil, unfrozen water content is uniquely
determined by the negative temperature, regardless how much initial water content before
freezing. This significant behavior of between unfrozen water content and temperature is referred
to as soil freezing characteristic curve (SFCC). It is similar to the behavior of soil water content as
the function of suction in soil water characteristic curve (SWCC).

SFCC plays four roles in SVHEAT calculation:

- Determining unfrozen water content at a given temperature below freezing point,
- Calculate ice content for a given water content above freezing point, and a given
 temperature,
- Calculate energy release or absorption during phase change,
- Calculate hydraulic conductivity reduction in soil freezing-frozen regime.

Ice content and unfrozen water content have a major effect on thermal conductivity and heat
capacity, as indicated in equation \[235 \], equation[252], and equation [256]. Due to huge
amount of latent heat of water \((3.34 \times 10^8 J/m^3)\), a little ice segregation will generate a large
amount of energy released during freezing. Therefore, it is very important to determine or estimate
SFCC in calculation of thermal conductivity, heat capacity, and phase change. The following
sections describe how to determine or estimate SFCC with SVHEAT.

4.3.1 Estimated SFCC with SWCC

Many researchers have suggested that SFCC is very similar to the SWCC in shape. SVHEAT
provides the approach using SWCC to estimate SFCC, in which the soil suction under the
temperature is calculated with Clapeyron equation \[34 \]. Using SWCC equation as described in the
SVFLUX Theory Manual, the unfrozen water content can be obtained.

4.3.2 Estimated SFCC by Empirical Expression

As another option, SFCC can be calculated using empirical expression. SVHEAT allows user to
specify the SFCC expression and \(m_2 \) expression, which is the slope or a derivate of SFCC. For
example, Tice et al., (1976) proposed an expression of unfrozen water content as the function of
temperature:

\[
\theta_u = \begin{cases} \theta_w & \text{if } T > T_{ef} \\ a|T|^{-b} & \text{else} \end{cases}
\]

[261]

where:

- \(\theta_u \) = gravimetric unfrozen water content,
- \(\theta_w \) = gravimetric water content of unfrozen soil,
- \(|T| \) = absolute value of the negative temperature, °C,
- \(T_{ef} \) = Soil freezing point, °C, and
- \(a \) and \(b \) = experimental parameters.

In SVHEAT the water content is expressed as the volumetric water content, so that the equation
[259] is modified as the equation [260]:

\[
\theta_u = \begin{cases} \theta_w & \text{if } T > T_{ef} \\ \frac{\gamma_d a|T|^{-b}}{\rho_w} & \text{else} \end{cases}
\]

[262]
\[m_2^i = \begin{cases} 0 & \text{if } T > T_{ef} \\ \gamma_d \frac{T - a}{b + 1} & \text{else} \end{cases} \]

where:

- \(\theta_u \) = volumetric unfrozen water content, \(m^3/m^3 \),
- \(\theta_w \) = volumetric water content of unfrozen soil, \(m^3/m^3 \),
- \(\gamma_d \) = soil dry density, \(kg/m^3 \),
- \(\rho_w \) = water density, \(kg/m^3 \), and
- \(m_2^i \) = the slope of SFCC.

The values of parameter \(a \) and parameter \(b \) in the equation \[260 \] for the common soils are provided as a reference in the following table:

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Specific surface area</th>
<th>Parameter a</th>
<th>Parameter b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morin Clay</td>
<td>60</td>
<td>0.096</td>
<td>0.406</td>
</tr>
<tr>
<td>Caen silt</td>
<td>-</td>
<td>0.095</td>
<td>0.227</td>
</tr>
<tr>
<td>Calgary silt</td>
<td>-</td>
<td>0.096</td>
<td>0.364</td>
</tr>
<tr>
<td>Manchester silt</td>
<td>-</td>
<td>0.025</td>
<td>0.864</td>
</tr>
<tr>
<td>Kaolin</td>
<td>-</td>
<td>0.104</td>
<td>0.425</td>
</tr>
<tr>
<td>Allendale clay</td>
<td>-</td>
<td>0.157</td>
<td>0.187</td>
</tr>
<tr>
<td>Inuvik clay</td>
<td>-</td>
<td>0.145</td>
<td>0.254</td>
</tr>
<tr>
<td>Tomokomai clay</td>
<td>54</td>
<td>0.195</td>
<td>0.305</td>
</tr>
<tr>
<td>Suffield clay</td>
<td>140</td>
<td>0.139</td>
<td>0.315</td>
</tr>
<tr>
<td>Fairbanks silt</td>
<td>40</td>
<td>0.048</td>
<td>0.326</td>
</tr>
<tr>
<td>Illite</td>
<td>50.6</td>
<td>0.332</td>
<td>0.273</td>
</tr>
<tr>
<td>Undisturbed Fairbanks silt</td>
<td>-</td>
<td>0.058</td>
<td>0.439</td>
</tr>
<tr>
<td>China silt</td>
<td>6</td>
<td>0.014</td>
<td>1.46</td>
</tr>
<tr>
<td>Japanese clay (45%)</td>
<td>-</td>
<td>0.128</td>
<td>0.402</td>
</tr>
<tr>
<td>West Lebanon Gravel</td>
<td>15</td>
<td>0.021</td>
<td>0.408</td>
</tr>
<tr>
<td>Manchester silt</td>
<td>18</td>
<td>0.025</td>
<td>0.515</td>
</tr>
<tr>
<td>Kaolin (KCa-1)</td>
<td>23</td>
<td>0.058</td>
<td>0.864</td>
</tr>
<tr>
<td>China silt</td>
<td>40</td>
<td>0.032</td>
<td>0.531</td>
</tr>
<tr>
<td>Leda clay</td>
<td>58</td>
<td>0.108</td>
<td>0.649</td>
</tr>
<tr>
<td>Morin clay</td>
<td>60</td>
<td>0.095</td>
<td>0.479</td>
</tr>
<tr>
<td>O’Brien clay</td>
<td>61</td>
<td>0.104</td>
<td>0.484</td>
</tr>
<tr>
<td>Goodrich clay</td>
<td>68</td>
<td>0.0864</td>
<td>0.456</td>
</tr>
<tr>
<td>Tuto clay</td>
<td>78</td>
<td>0.128</td>
<td>0.603</td>
</tr>
<tr>
<td>Sweden 478 clay</td>
<td>113</td>
<td>0.271</td>
<td>0.472</td>
</tr>
<tr>
<td>Suffield silty clay</td>
<td>148</td>
<td>0.111</td>
<td>0.254</td>
</tr>
<tr>
<td>Frederick clay</td>
<td>159</td>
<td>0.140</td>
<td>0.279</td>
</tr>
<tr>
<td>Elleworth clay</td>
<td>184</td>
<td>0.112</td>
<td>0.293</td>
</tr>
<tr>
<td>Regina clay</td>
<td>291</td>
<td>0.211</td>
<td>0.238</td>
</tr>
<tr>
<td>Niagara silt</td>
<td>37</td>
<td>0.066</td>
<td>0.410</td>
</tr>
<tr>
<td>Norway LE-1 clay</td>
<td>52</td>
<td>0.099</td>
<td>0.523</td>
</tr>
<tr>
<td>Kaolin No7</td>
<td>72</td>
<td>0.198</td>
<td>0.689</td>
</tr>
<tr>
<td>Athena silt Loam</td>
<td>83</td>
<td>0.06</td>
<td>0.301</td>
</tr>
<tr>
<td>Sweden 201 clay</td>
<td>419</td>
<td>0.197</td>
<td>0.492</td>
</tr>
<tr>
<td>Hectorie</td>
<td>419</td>
<td>0.384</td>
<td>0.369</td>
</tr>
<tr>
<td>Volcanic Ash</td>
<td>474</td>
<td>0.031</td>
<td>0.097</td>
</tr>
<tr>
<td>Hawaiian clay</td>
<td>382</td>
<td>0.3242</td>
<td>0.243</td>
</tr>
<tr>
<td>Material</td>
<td>SFCC</td>
<td>m_{2i}</td>
<td>(\theta_{ep})</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>Umiat bentonite</td>
<td>800</td>
<td>0.6755</td>
<td>0.343</td>
</tr>
<tr>
<td>Wyoming bentonite</td>
<td>800</td>
<td>0.5599</td>
<td>0.29</td>
</tr>
<tr>
<td>Basalt</td>
<td>6</td>
<td>0.0345</td>
<td>1.13</td>
</tr>
<tr>
<td>Morin clay</td>
<td>60</td>
<td>0.131</td>
<td>0.505</td>
</tr>
</tbody>
</table>

Figure 24 and Figure 25 illustrate the SFCC and \(m_{2i} \) estimated by the Tice and Anderson approach at the water content = 0.5, 0.3, and 0.15. The temperature at the end of phase change (i.e., \(\theta_{ep} \) parameter used in SFCC) can be determined using the relationship between \(m_{2i} \) and the temperature. For example, according to the Figure 25 when \(T < -3 \, ^\circ C \), \(m_{2i} = 0 \). Therefore \(\theta_{ep} \) can be chosen as -3 \, ^\circ C.

![Figure 27 SFCC with Tice and Anderson (1976) approach](image1)

![Figure 28 m2i with Tice and Anderson (1976) SFCC approach](image2)
NOTE:
In the SVHEAT software use the “m2i Graph” to display m_2^i changing with the temperature, and then determine the T_{ep} value that is required for the SFCC.

4.3.3 Exponential Expression of SFCC

Mackenzie et al., (2006), Lebeau and Konrad (2009) use an exponential expression to describe SFCC:

\[
\theta_u = (\theta_w - \theta_r) \exp \left[- \left(\frac{T - T_{ef}}{\zeta} \right)^2 \right] + \theta_r \quad \text{if } T < T_{ef}
\]

\[
m_2^i = -2(\theta_w - \theta_r) \frac{T - T_{ef}}{\zeta^2} \exp \left[- \left(\frac{T - T_{ef}}{\zeta} \right)^2 \right]
\]

\[
-2(\theta_u - \theta_r) \frac{T - T_{ef}}{\zeta^2} \quad \text{if } T < T_{ef}
\]

where:
\[
\theta_u = \text{unfrozen water content, m}^3/\text{m}^3,
\]
\[
\theta_w = \text{volumetric water content of unfrozen soil, i.e., } T \geq T_{ef},
\]
\[
\theta_r = \text{residual water content after the temperature } T < T_{ep}, \text{ m}^3/\text{m}^3,
\]
\[
T_{ef} = \text{soil freezing point, or liquidus temperature, } ^{o}\text{C},
\]
\[
T_{ep} = \text{temperature at the end of ice phase change, or solidus temperature, } ^{o}\text{C},
\]
\[
\zeta = \text{an empirical parameter, approximated with the value of } (T_{ef} - T_{ep})/2.
\]

The parameter ζ is used to control the shape of SFCC in the exponential expression. Figure 26 and Figure 27 show the impact of the parameter ζ on the shape of SFCC and m_2^i.

![Figure 29 SFCC with exponential expression](image)

Figure 29 SFCC with exponential expression
4.3.4 Determine SFCC with Multi-lines

In a simplified case, it can be assumed that unfrozen water content is decreased linearly with temperature decreasing, such that SFCC and m_{2i} can be expressed as

$$
\theta_u = \theta_u, \quad \text{if} \quad T > T_{ef}
$$

$$
\theta_u = \theta_{res} + \frac{\theta_u}{T_{ef} - T_{ep}} (T - T_{ep}), \quad \text{if} \quad T_{ef} > T > T_{ep}
$$

$$
\theta_u = \theta_{res}, \quad \text{if} \quad T < T_{ep}
$$

$$
m_{2i} = \frac{\theta_u}{T_{ef} - T_{ep}}
$$

where:

- θ_u = unfrozen water content, m^3/m^3,
- θ_{res} = the remaining unfrozen water content after phase change is completed, m^3/m^3,
- θ_w = volumetric water content before freezing, m^3/m^3,
- T_{ef} = soil freezing temperature, °C, and
- T_{ep} = the temperature at the end of soil phase change, °C

With this method, m_{2i} is a constant value, and decreases with the decrease in the value of T_{ep}. In other words, the phase change can be relaxed by adjusting the value of T_{ep} as shown in Figure 28.
and Figure 29. This feature may be useful in some cases to ensure a model running stability with the phase change.

Figure 31 SFCC with multi-line estimation

Figure 32 m2i with the multi-line estimation
4.3.5 Determine SFCC by Experimental Data

If a user can obtain experimental data of unfrozen water content, it would be a better way to reach a high precision in FEM calculation. SVHEAT provides a data table, allowing for user to specify the unfrozen water content as the function of temperature.

NOTE:
Please note that, in SVOffice 2006, SVHEAT requires user to enter the normalized data of unfrozen water content ranging from 0 to 1. This requirement is not necessary any more. The user just enters the original data obtained from experiments into the data table.

SVHEAT uses the derivative of the unfrozen water content curve to calculate the change in the latent heat component of the energy storage term of Equation [5]. The equations needed to describe the derivative of most unfrozen water content curves can be quite complex. Therefore, table files have been used to describe the necessary functions to the SVHEAT solver.

![Figure 33 Typical unfrozen water content and m2i curves](image)

4.4 HYDRAULIC CONDUCTIVITY REDUCTION

In the seepage and heat coupled model, hydraulic conductivity in freezing or frozen regime is significantly reduced. Two approaches are implemented in SVHEAT to consider the hydraulic conductivity reduction in frozen soil.

4.4.1 Impedance Factor (Jame, 1977)

Jame originally proposed an empirical expression to account for the ice existence of ice effect on the hydraulic conductivity. The equation is

\[
k_f = 10^{-ES} k_u
\]

where:
- \(E\) = impedance factor, a dimensionless and empirical constant,
- \(S_i\) = the degree of ice saturation, \(S_i = \theta_i/\theta_{ws}\),
- \(\theta_i\) = volumetric ice content, \(m^3/m^3\),
- \(\theta_{ws}\) = volumetric saturated water content, \(m^3/m^3\),
- \(k_u\) = hydraulic conductivity of unfrozen soil, \(m/s\), and
\[k_f = \text{hydraulic conductivity of frozen soil, m/s} \]

The approaches to determine hydraulic conductivity of unfrozen soil please see the SVFLUX Theory Manual.

4.4.2 Estimated by SWCC

SVHEAT employs Clapeyron equation [34] to calculate the pore water suction for the given temperature below freezing point, and then uses the relationship between hydraulic conductivity and suction to calculate hydraulic conductivity.
5 BOUNDARY CONDITIONS

SVHEAT implements the use of Temperature (Dirichlet), Gradient (Neumann), and convection (Robin) boundary conditions. In addition, SVHEAT provides special boundary conditions named as Climate boundary, and Thermal Insulation boundary.

- A Temperature boundary condition forces the solution of temperature in the governing partial differential to the value defined by an expression on a continuous series of one or more boundary segments. The expression may be an explicit specification value, involving only constants and coordinates, or it may be an implicit relationship involving values and derivatives of system variables (FlexPDE User’s Manual, 2001).
- The Gradient boundary condition represents a generalized flux boundary condition derived from the divergence theorem. The expression may be an explicit specification, involving only constants and coordinates, or it may be an implicit relation involving values and derivatives of system variables. The Gradient boundary condition is a generalization of the concept of a flux boundary condition (FlexPDE User’s Manual, 2001).
- Convection and radiation boundary condition applies to a boundary exposed to moving fluid, for example, air temperature. In SVHEAT, the convection and radiation boundary condition is implemented as one of climate condition, but it can be applied to outer and inner boundary.
- Climate boundary condition is used to specify boundary condition related to the climate data, including air temperature, wind, sun radiation, snow cover, or thermosyphon, etc.
- Thermal insulation boundary condition is implemented for easy to use the very thin layer of thermal insulation in the model simulation.

5.1 RULES TO SPECIFY BOUNDARY CONDITIONS

SVHEAT provides an interface allowing user to specify a constant value or expression of temperature or thermal flux. To build an expression of temperature or thermal flux, the system variable may be used.

NOTE:
The main system variables in SVHEAT include T_e (Temperature), t (Time), x (x-coordinate), y (y-coordinate), and z (z-coordinate). The variable of soil freezing point, T_{ef}, and temperature at phase change finished, T_{ep}, are available for freezing/thawing process.

FlexPDE uses integration by parts to reduce the order of second derivative terms in the system equations. Application of this technique over a two-dimensional computation cell produces an interior area integral term and a boundary line integral term. Forming the same integral in two adjacent computation cells produces the same boundary integral at their interface, except that the direction of integration is opposite in the two cells. If the integrals are added together to form the total integral, the shared boundary integrals cancel (FlexPDE User’s Manual, 2001).
Applied to the term $Dx(f)$, where f is an expression containing further derivative terms, integration by parts yields:

$$\int \frac{\partial f}{\partial x} \cdot \partial V = \int f \cdot c \cdot \partial s \quad [269]$$

where c denotes the x-component of the outward surface-normal unit vector and dS is the differential surface element (FlexPDE User’s Manual, 2001). (y- and z- derivative terms are handled similarly, with c replaced by the appropriate unit-vector component).

Applied to the term $Dxx(f)$, where f denotes a scalar quantity, integration by parts yields:

$$\int \frac{\partial^2 f}{\partial x^2} \cdot \partial V = \int \frac{\partial f}{\partial x} \cdot c \cdot \partial s \quad [270]$$

where c denotes the x-component of the outward surface-normal unit vector and dS is the differential surface element FlexPDE (2001). (y- and z- derivative terms are handled similarly, with c replaced by the appropriate unit-vector component).

FlexPDE performs these integrations in 3 dimensions, including the volume and surface elements appropriate to the geometry. In 2D Cartesian geometry, the volume cell is extended one unit in the z direction. This technique forms the basis of the treatment of exterior boundary conditions and interior material interface behavior in (FlexPDE User’s Manual, 2001).

NOTE:

If statements will be of the form IF expression THEN expression ELSE expression. The THEN or ELSE expression may contain nested IF...THEN...ELSE expressions. Each ELSE will bind to the nearest IF.

NOTE:

See the User’s Manual for more a more detailed discussion on each specific system of boundary condition usage.

5.2 CLIMATE BOUNDARY CONDITIONS

The temperature and thermal flux applied to the boundary may be associated with the climate temperature and conditions. SVHEAT implements the following approaches to determine the soil temperature at the ground surface based on the climate temperature.

- Approximated with air temperature
- Empirical based N-Factor
- Thermal balance based
- Thermosyphon
- User specified thermal convection and radiation.

5.2.1 Equal to Air Temperature

In the simple case if no snow existence, the soil temperature at the applied boundary is approximated with the air temperature, i.e.
\[T_{\text{surface}} = T_a \]

5.2.2 N-Factor

The soil temperature at the applied boundary is estimated using the following empirical equation:

\[T_{\text{surface}} = NF(T_a - T_{ef}) + T_{ef} \]

where:
- \(NF \) = empirical value of N-factor,
- \(T_a \) = air temperature, °C, and
- \(T_{ef} \) = temperature at soil freezing point, °C.

The N-Factor can be specified as a global value or daily basis in SVHEAT. Daily basis allows user to specify the different values day-by-day. Use the below table for N-Factor values for various surfaces.

Table 10 N-Factor values for common surfaces

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Freezing ((n_f))</th>
<th>Thawing ((n_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Surface - spruce trees, brush, moss over peat</td>
<td>0.29 (under snow)</td>
<td>0.37</td>
</tr>
<tr>
<td>Soil Surface - brush, moss over peat</td>
<td>0.25 (under snow)</td>
<td>0.73</td>
</tr>
<tr>
<td>Turf</td>
<td>0.5 (under snow)</td>
<td>1.0</td>
</tr>
<tr>
<td>Snow</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Probable range for northern conditions</td>
<td>0.9 - 0.95</td>
<td>-</td>
</tr>
<tr>
<td>Asphalt pavement</td>
<td>0.29 - 1.0 or greater</td>
<td>1.4 - 2.3</td>
</tr>
<tr>
<td>Probable range for northern conditions</td>
<td>0.9 - 0.95</td>
<td>-</td>
</tr>
<tr>
<td>Concrete Pavement</td>
<td>0.25 - 0.95</td>
<td>1.3 - 2.1</td>
</tr>
<tr>
<td>Probable range for northern conditions</td>
<td>0.7 - 0.9</td>
<td>-</td>
</tr>
</tbody>
</table>

The Food and Agriculture Organization of the United Nations presents good information on weather analysis at: http://www.fao.org/docrep/x0490e/x0490e07.htm

5.2.3 Boundary with Snow Cover

If the surface of the applied boundary is covered with snow, the snow cover is regarded as a virtual layer. There is thermal resistance to the heat flow from the surface of snow cover to the soil. Figure 31 is a conceptual model with the boundary A-B covered with snow. Because snow has a lower value of thermal conductivity the temperature at the ground surface, \(T_g \), will be different from the temperature at the snow surface, \(T_{so} \). The magnitude of the difference will depend on the snow depth.
In the case without consideration of heat storage in the snow cover, the heat flux through the snow cover must be equal to the heat flux at the ground surface, that is,

$$\dot{\lambda}_{sn} \frac{T_{sn} - T_g}{D_{sn}} = q_{Tg}$$

[273]

$$q_{Tg} = \lambda \frac{\partial T}{\partial Z} - L_v q_v - (C_w q_L + C_v q_v + C_a q_a) (T - T_{in})$$

[274]

where:

- T_{sn} = temperature at the snow surface, °C,
- T_g = temperature at the ground surface, °C
- D_{sn} = snow depth, m,
- λ_s = thermal conductivity of snow, Js$^{-1}$m$^{-1}$°C$^{-1}$,
- λ = thermal conductivity of soil, Js$^{-1}$m$^{-1}$°C$^{-1}$,
- q_{Tg} = soil heat flux at the applied boundary, Js$^{-1}$m$^{-2}$,
- L_v = latent of heat for water evaporation, Js$^{-1}$m$^{-1}$,
- q_v = vapour water in soil flow velocity, m/s,
- q_L = liquid water in soil flow velocity, m/s,
- q_a = dry air in soil flow velocity, m/s,
- C_w = heat capacity of water, Js$^{-1}$m$^{-3}$°C$^{-1}$,
- C_v = heat capacity of water vapour, Js$^{-1}$m$^{-3}$°C$^{-1}$,
- C_a = heat capacity of dry air, Js$^{-1}$m$^{-3}$°C$^{-1}$, and
- T_{in} = temperature of water, vapour, or air.
Therefore, the temperature applied to the boundary can be expressed in terms of snow depth and the temperature at the snow surface:

\[
T_{\text{surface}} = T_g = T_{sn} - \frac{D_{sn}}{\lambda_s} q_{Tg}
\]

The temperature at the snow surface can be determined using the equation [271], or [272]. It can be seen from equation [273] that when the snow depth, \(D_{sn} = 0 \), the equation [273] simplifies to equation [271], or [272]. The thermal conductivity can be calculated with equation [273]. The snow depth can be determined by measured values or estimated according to precipitation accumulation. The theories related to snow accumulation, compaction and melt are addressed in the SVFLUX theory manual.

Snow cover densification

A seasonal ground thermal regime under snow cover is usually simulated using a homogeneous snow layer with constant snow density and thermal conductivity. However, in nature the snow cover contains layers of snow and each with its own density. The snow cover is compacted and densified by its own weight and climatically metamorphic processes. Therefore, the snow cover density and snow thermal conductivity change continuously during the winter season.

Goodrich (1982) presented a theory to simulate snow cover densification processes. The theory assumes that the compaction of the snow cover is due to the overburden pressure.

\[
\sigma = \int_0^{Z(t,t_o)} \rho(Z,t,t_o) dZ = \int_{t_o}^{t} A(t) dt
\]

where:

\(Z(t,t_o) \) = depth below the surface at time \(t \) of snow deposited at time \(t_o \),

\(\rho(Z,t,t_o) \) = snow density, it is a function of \(Z, t, t_o \) and

\(A(t) \) = accumulation rate.

A constant mass of the snow cover is assumed (Goodrich, 1982) and the vertical strain rate is defined as:

\[
\dot{\varepsilon} = \frac{-\partial Z/\partial t}{Z} = \frac{\partial \rho/\partial t}{\rho}
\]

where:

\(\dot{\varepsilon} = \frac{d\varepsilon}{dt} \) = vertical strain rate in snow cover

A linear stress-strain rate relation is usually used for snow cover:

\[
\dot{\varepsilon} = \frac{\sigma}{\eta}
\]

where:

\(\eta \) = compactive viscosity factor

The compactive viscosity factor, \(\eta \), is a function of snow density and temperature.

\[
\eta = \eta_0 e^{\beta \rho} e^{d/RT}
\]

where:
\(\eta_0 \) and \(q \) = imperical coefficients depending on snow type (Goodrich, 1982)

\(A, R \) and \(T \) = Activation energy for snow, universal gas constant and absolute temperature

The imperical coefficient, \(\eta_0 \), is between 6 kg-day/m² and 15 kg-day/m² for dry old snow at temperatures between 0 °C and -5 °C (Goodrich, 1982).

The imperical coefficient, \(q \), varies from 15.8 m³/ton to 21.7 m³/ton for natural densification at sites in Greenland and Antarctica (Goodrich, 1982).

Measured values of activation energy for snow, \(A \), are between 29 and 105 kJ/mole (Goodrich, 1982). For snow density of 0.17 ton/m³, a typical activation energy, \(A \), value of 38 kJ/mole is used (Goodrich, 1982).

Equations [277], [278] and [279] are used to solve for snow layer thickness and snow density.

5.2.4 Energy Balance

With this method, the applied thermal boundary condition is based on thermal flux balance at the ground surface, i.e.,

\[
Q_{\text{surface}} = Q_G = Q_N - Q_H - Q_L
\]

where:

- \(Q_N \) = net radiation flux, J/(m²-day),
- \(Q_H \) = sensible heat flux, J/(m²-day), and
- \(Q_L \) = latent heat flux, J/(m²-day).

For historic reasons, the net radiation flux, sensible heat flux, and latent heat flux are obtained or calculated in m³/(m²day), or m/day. In this case, the equation [280] is changed into the follows:

\[
Q_{\text{surface}} = C_e (Q_n - Q_h - Q_l)
\]

where:

- \(Q_n \) = net radiation flux, m/day,
- \(Q_h \) = sensible heat flux, m/day,
- \(Q_l \) = latent heat flux, m/day, and
- \(C_e \) = conversion factor to covert m/day into J/(m²-day).

NOTE:

In current SVFLUX or SVHEAT version, volumetric latent heat of water vaporization, \(L_v \), is used as \(C_e \) (i.e., \(C_e = L_v = 2.5 \times 10^9 \) J/m³). This approach may be improved in future versions of SVFLUX or SVHEAT.

Net radiation at the water surface, \(Q_n \), can be measured or approximated using the Penman equation (Penman, 1948), which is as follows,

\[
Q_n = (1-r)R_c - \sigma(273.5 + T_a)^4 \left(0.56 - 0.92 \left(\frac{\mu_{v,\text{air}}}{\mu_{v,\text{sat}}} \right)^{0.5} \right) (0.10 + 0.90n / N)
\]

where:

- \(Q_n \) = net radiation, m/day,
\(r = \text{reflection coefficient}, \)
\(R_c = 0.95 R_a(0.18 + 0.55n/N) = \text{shortwave radiation, m/day}, \)
\(0.95 = \text{coefficient suggested by Penman for evaporation from a wet and bare soil as compared to evaporation from an open water surface}, \)
\(R_a = \text{solar radiation, MJ/m}^2\text{-day}, \)
\(\sigma = \text{Stefan Boltzmann’s constant, W-m}^2\text{-K}^4, \)
\(T_a = \text{air temperature, oC}, \)
\(u_{\text{sat} \text{air}} = \text{vapor pressure of the air above the surface, mmHg, and} \)
\(n/N = \text{sunshine ratio (actual/possible hours of bright sunshine)}. \)

NOTE:

\(u_{\text{sat} \text{air}} \) in the above equation must be in mmHg.

The sensible heat component, \(Q_h \), reflected from the ground surface to the air is described as follows (Penman, 1948; Gray, 1970; Wilson, 1990):

\[
Q_h = C_f \eta f(u)(T_s - T_a) \tag{283}
\]

where:

\(Q_h = \text{sensible heat, m/day}, \)
\(C_f = \text{conversion factor, (i.e., 1 kPa = 0.0075 mHg)}, \)
\(\eta = \text{psychometric constant, 0.06733 kPa/oC at 20 oC}, \)
\(f(u) = \text{function depending on wind speed, } f(u) = 0.35(1+ 0.146 W_w), \)
\(W_w = \text{wind speed, km/hr}, \)
\(T_s = \text{soil temperature at the ground surface, and} \)
\(T_a = \text{air temperature overlying the ground surface}. \)

The latent heat, \(Q_l \), is mainly associated with liquid evaporation. It can be described by actual evaporation, \(AE \). Please see SVFLUX theory manual describes several approaches to estimate or calculate the actual evaporation.

If the boundary covered with snow, the thermal flux applied to the boundary condition is approximated with the following expression:

\[
Q_{\text{surface}} = \begin{cases}
Q_G & \text{if } D_{sn} = 0 \\
\lambda_{sn} \frac{T_{sn} - T_g}{D_{sn}} & \text{if } D_{sn} > 0
\end{cases} \tag{284}
\]

The temperature at the snow surface is assumed to equal to air temperature.

5.2.5 Thermosyphon

The thermosyphon climate boundary method allows the simulation of a physical thermosyphon installed in the ground. The thermosyphon boundary equation in SVHEAT describes the heat flux across the boundary due to the heat extracted by the thermosyphon. Please refer to the information provided by Arctic Foundations Inc. at http://www.arcticfoundations.ca for a description of thermosyphons and their applications.

The heat extraction for a thermosyphon is described by the following equation:
\[Q = \begin{cases} P(T - T_a) & \text{if } T - T_a \geq T_{\text{threshold}} \\ 0 & \text{otherwise} \end{cases} \]

where:
- \(Q \) = heat extraction rate of the thermosyphon, \(w \),
- \(P \) = overall performance of the thermosyphon, \(w/°C \),
- \(T \) = soil temperature, \(°C \),
- \(T_a \) = air temperature, \(°C \), and
- \(T_{\text{threshold}} \) = a threshold of temperature, \(°C \).

The performance of thermosyphon is estimated using Arctic Foundations Method. This method describes the performance as a function of wind speed and thermosyphon radiator surface area. The equation is valid for thermosyphon installed at angles of inclination greater than 5° from the horizontal to the vertical.

\[P = A + B \left(\frac{W_w}{W_{w0}} \right)^C \]

where:
- \(P \) = overall performance characteristic of the thermosyphon, \(w/°C \),
- \(W_w \) = the wind speed from the climate dataset, \(m/s \),
- \(W_{w0} \) = reference of wind speed, \(1 \ m/s \),
- \(A_{\text{rad}} \) = radiator surface area, \(6.5 \ m^2 \) by default, and
- \(A, B, C \) = empirical parameter, \(A = 2.52 \ \text{w/m}^2-°C, B = 4 \ \text{w/m}^2-°C \) by default, and \(C = 0.62 \).

The parameters of \(A, B, \) and \(C \) are related to the working gas and the angle of evaporator for thermosyphon. The following table is the data obtained by Zarling and Haynes (1985):

<table>
<thead>
<tr>
<th>Working gas</th>
<th>Angle of evaporator (°C)</th>
<th>(A) (w/m²-°C)</th>
<th>(B) (w/m²-°C)</th>
<th>(C)</th>
<th>(A) (Btu/s-°F)</th>
<th>(B) (Btu/s-ft²-°F)</th>
<th>(C)</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0</td>
<td>2.59</td>
<td>3.38</td>
<td>0.23</td>
<td>1.267E-4</td>
<td>1.660E-4</td>
<td>0.23</td>
<td>AFI</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.02</td>
<td>4.99</td>
<td>0.3</td>
<td>1.479E-4</td>
<td>2.444E-4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.92</td>
<td>4.77</td>
<td>0.4</td>
<td>1.433E-4</td>
<td>2.338E-4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.91</td>
<td>7.36</td>
<td>0.15</td>
<td>1.426E-4</td>
<td>3.613E-4</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.74</td>
<td>6.74</td>
<td>0.28</td>
<td>1.343E-4</td>
<td>3.304E-4</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>NH₃</td>
<td>0</td>
<td>3.94</td>
<td>1.95</td>
<td>0.38</td>
<td>1.931E-4</td>
<td>9.580E-5</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>4.46</td>
<td>2.03</td>
<td>0.57</td>
<td>2.188E-4</td>
<td>9.957E-5</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.31</td>
<td>2.37</td>
<td>0.47</td>
<td>2.112E-4</td>
<td>1.162E-4</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>4.18</td>
<td>2.6</td>
<td>0.40</td>
<td>2.052E-4</td>
<td>1.275E-4</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.11</td>
<td>2.82</td>
<td>0.40</td>
<td>2.014E-4</td>
<td>1.380E-4</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.2</td>
<td>2.95</td>
<td>0.39</td>
<td>2.059E-4</td>
<td>1.448E-4</td>
<td>0.99</td>
<td></td>
</tr>
</tbody>
</table>

In SVHEAT two approaches are possible to setup thermosyphon in the model. Approach one regards the thermosyphon as the heat sink, which is implemented as a heat pump-well, or heat
tunnel. Another way applies the evaporator of thermosyphon as heat flux boundary condition. In this case the heat extraction rate can be expressed as:

\[q_{\text{thermosyphon}} = h_{\text{thermosyphon}} (T - T_a) \] \[287 \]

\[h_{\text{thermosyphon}} = \frac{P}{A_{\text{evaporator}}} \] \[288 \]

where:
- \(q_{\text{thermosyphon}} \) = heat extraction flux of thermosyphon, \(w/m^2 \),
- \(h_{\text{thermosyphon}} \) = heat transfer performance of thermosyphon, \(w/m^2 \cdot ^\circ C \), and
- \(A_{\text{evaporator}} \) = area of evaporator of thermosyphon, \(m^2 \).

5.2.6 Convection/Radiation

A Convection boundary condition is applied to the boundary where the heat transfers mainly by thermal convection. One example is ventilated pipe used in highway. The heat transfer between air and ventilated pipe is forced convection. The thermal flux on the convection boundary can be expressed as

\[q_c = h_c (T_a - T) \] \[289 \]

where:
- \(q_c \) = heat flux to thermal convection, \(w/m^2 \),
- \(h_c \) = thermal convection coefficient, \(w/(m^2 \cdot ^\circ C) \),
- \(T_a \) = environmental temperature, \(^\circ C \), and
- \(T \) = soil temperature, \(^\circ C \).

The default value of the thermal convection coefficient is set to 50 \(w/m^2 \cdot ^\circ C \), or 4,320,000 \(J/day \cdot m^2 \cdot ^\circ C \). The thermal convection coefficient is affected by many factors. User can specify a constant value or an expression of the thermal convection coefficient in the text box of Convection Coefficient Expression.

It should be noted that the environmental temperature, \(T_a \), can be specified with Air Temperature Tab. In this case, SVHEAT regards data specified in Air Temperature Tab as more general environmental temperature, rather than atmospheric air temperature.

If the Radiation boundary condition included, thermal flux applied the boundary is expressed as

\[q_r = \varepsilon \sigma (T_a^4 - T^4) \] \[290 \]

where:
- \(q_r \) = heat flux due to radiation, \(w/m^2 \),
- \(\varepsilon \) = emissivity, a dimensionless factor changing from 0 to 1, for soil material, it is set to 0.94 by default,
- \(\sigma = 5.67 \times 10^{-8} \) Stefan-Boltzmann’s constant,
- \(T_a \) = environmental temperature, \(K \), and
- \(T \) = soil temperature, \(K \).

The applied thermal boundary condition is,
\[Q_{\text{surface}} = q_c + q_r \] \[291 \]

If the boundary covered with snow, the thermal flux applied to the boundary condition is approximated with the following expression:

\[
Q_{\text{surface}} = \begin{cases}
Q_G & \text{if } D_{sn} = 0 \\
\lambda_{sn} \frac{T_{sn} - T_g}{D_{sn}} & \text{if } D_{sn} > 0
\end{cases}
\] \[292 \]

The temperature at the snow surface is assumed to equal to the air temperature.

5.3 INSULATION BOUNDARY CONDITION

Thermal insulation is commonly used in the application of heat transfer. The insulation layer can be modeled as a common material. For example, in cold regions to prevent the permafrost from melting, the thermal insulation may be utilized in the basement of embankment. Figure 32 is a simple case for such application scenario. Because a thermal insulator is usually very thin compared to its lateral extents a very dense mesh would have to be generated in the insulation layer. This situation can be improved by using two special boundary conditions termed "Inner Insulation" and "Outer Insulation", as shown in Figure 33.

Figure 35 Modeling thermal insulation as a common material
5.3.1 Inner Insulation boundary

Inner insulation boundary is implemented as jump boundary, and can be expressed as

$$\text{contact}(T) = \frac{\text{jump}(T)}{d_{\text{ins}} / \lambda_{\text{ins}}}$$

[293]

where:
- T = temperature of model domain, °C,
- d_{ins} = thickness of thermal insulator, m, and
- λ_{ins} = thermal conductivity of thermal insulator, J/s·m·°C.

5.3.2 Outer Insulation boundary

The outer insulation is implemented as thermal resistance in SVHEAT. The thermal flux that is applied the boundary can be written as:

$$\text{natural}(T) = \frac{\lambda_{\text{ins}}(T - T_{\text{ins}})}{d_{\text{ins}}}$$

[294]

where:
- T_{ins} = temperature at the surface of insulation. Usually it is equal to the ambient temperature, °C.

5.4 CAUCHY BOUNDARY CONDITION

The general form of Cauchy boundary condition is written as:

$$q_n = q_i + R_t (T_0 - T)$$

[295]

where:
- T_0 = reference temperature °C, and it can be a function of time t
- R_t = heat transfer coefficient (J/s·m²·°C), and it can be a function of time t
- q_i = prescribed heat flux (W/m²), and it can be a function of time t
- q_n = normal heat flux to a boundary (W/m²).
The Cauchy boundary condition (or the 3rd kind BC) is a general boundary condition, which can be converted back to the Dirichlet boundary condition (1st kind BC) or Neumann boundary condition (2nd kind BC). When $R = 0$, the 2nd kind BC is obtained from [295]. When $R \to \infty$, the 1st kind BC, $T = T_0$, is obtained from [295].

5.5 Flux Sections

The conductive heat flow, the rate heat flow between two points can be expressed as,

$$Q_H = K \frac{\partial T}{\partial l} A$$ \[296\]

where:
- Q_H = heat flow, J/s,
- K = thermal conductivity, J/s·m·°C,
- T = temperature, °C, and
- A = cross-sectional area, L^2.

In transient models the total heat flow between two points is the same as shown in the above equation multiplied by the total time. The resulting equation is,

$$Q = K \frac{\partial T}{\partial l} A t$$ \[297\]

where:
- Q = total heat flow, J,
- K = thermal conductivity, J/s·m·°C,
- T = temperature, °C,
- A = cross-sectional area, m^2, and
- t = total time, s.
6 WELLS AND TUNNELS

6.1 INTRODUCTION

Heating or cooling by heat pumps is achieved by circulating water through a network of pipes and bore holes in the ground. Subsurface freezing for foundation support can be accomplished by the natural convection of a liquid in a thermosyphon. SVHEAT models, these types of features are simulated as heat wells, where heat is injected or extracted along the length of the well.

In a numerical model, tunnels and wells are represented as localized sinks or sources. Numerically, they remove or add heat to cells. For regional scale models, the diameter of a well bore hole or tunnel shaft is too small to model efficiently, as it requires a mesh resolution fine enough to model the physical bore hole.

A traditional method of representing well and tunnel objects is with a line of nodes in a finite element model. Such a representation is efficient in terms of the mesh, but can result in extremely sharp gradients next to the line of the elements. This is especially true if the internal boundary condition applied to the well/tunnel differs greatly from the surrounding domain. Resulting sharp gradients can lead to instabilities in the numerical model.

For these reasons, SVHEAT treats wells differently. SVHEAT models wells as a sink (or source) term in the partial differential equations, rather than as a physical boundary condition. This eliminates the meshing issues with trying to model a bore hole that is very small relative to the extent of the model. This methodology introduces an approximation that affects the distance at which the flux across a closed surface bounding the well screen becomes accurate. The user can set this influence distance, and experiment with the level that provides the right mix of accuracy and modeling speed.

In SVHEAT, wells are vertical features, whereas tunnels can be inclined at any angle, and be a sequence of straight line segments. They may be used interchangeably. Both can be included in two- and three-dimensional models.

In this document, tunnels are only referred to where the theory differs from that of wells. Otherwise, the theory holds for tunnels in the same way.

6.2 EQUATIONS

Equation [291] is the heat conduction equation in three-dimensions.

\[\frac{\partial}{\partial t}\left(\lambda_x \frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(\lambda_y \frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(\lambda_z \frac{\partial T}{\partial z}\right) + \vec{Q}_{\text{well}} = \left(C + L_f m_i^f\right) \frac{\partial T}{\partial t} \]

[298]

Where:
- \(T \) = Temperature,
- \(\lambda_x \) = thermal conductivity in the x direction,
- \(\lambda_y \) = thermal conductivity in the y direction,
- \(\lambda_z \) = thermal conductivity in the z direction,
- \(C \) = volumetric heat capacity
- \(m_i^f \) = the derivative of the soil-freezing characteristic curve
The source term, \(\overline{Q}_{\text{well}} \), equation [299], simulates the wells.

\[
\overline{Q}_{\text{well}} = \frac{P}{\int_V P \, dV} Q_{\text{well}}
\]

[299]

where: \(Q_{\text{well}} \) is the user-defined pumping/injection rate of the well, and \(P \), equation [300], is a function that scales the source term.

\[
P = \exp\left(-\frac{|r|^2}{\alpha^2 \ln 20} \right)
\]

[300]

where: \(r \) (described in Section 6.3) is the shortest vector from the well to a point in the model domain, and \(\alpha \) is the user-defined influence distance. With this definition of \(P \), when \(|r| = \alpha \), \(P = 1/20 \). The integral \(\int_V P \, dV \) in Equation [292] is taken over the entire volume, \(V \), of the model, and normalizes \(P \) so that \(\int_V \overline{Q}_{\text{well}} \, dV = Q_{\text{well}} \). Figure 34 shows some examples of \(P \) for some sample values of \(\alpha \).

![Figure 37: Examples of \(P \) for values of \(\alpha \).](image)

6.3 GEOMETRY

The vector, \(r \), in Equation [293], is either the vector perpendicular to the well screen to the model point, or the vector from the closest end of the screen to the point. Figure 35 shows \(r \) when the model point is closest to a point in the screened segment, and Figure 36 shows \(r \) when the model point is the closest to an end of the screen.
6.4 SETTING THE INFLUENCE DISTANCE

The influence distance affects how far away from the screen Q_{well} becomes realized. Smaller influence distances will cause the well flux to be realized closer to the screen than larger influence distances. The influence distance should be set to a value that represents the scale at which the thermal flux is important. In general, if the model has horizontal extents in the hundreds of meters, the flux in a volume immediately surrounding the screen is less important than the overall affect that the well has on the flow in the region. Therefore, a larger value is appropriate (~10 m). This can produce shallower gradients and prevent the computations in the volume surrounding the well from dominating the system. For simpler models, the influence distance has little effect on the speed of the model. Therefore, the influence distance can be set to a small value (~1 m).
6.5 BOUNDARY CONDITIONS

All well and tunnel boundary conditions are implemented through the sink/source term, \(\overline{Q}_{\text{well}} \), in Equation [291]. SVHEAT calculates an appropriate value of \(Q_{\text{well}} \) for each type of boundary condition. The units of \(Q_{\text{well}} \) are J/s, and \(\overline{Q}_{\text{well}} \) J/s-m³.

6.5.1 Rate

The value of \(Q_{\text{well}} \) in Equation [292] is specified.

6.5.2 Temperature

A specified temperature, \(T_{\text{well}} \), is maintained by causing the flow necessary to realize \(T_{\text{well}} \) along the screen. The flow is given by:

\[
Q_{\text{well}} = \begin{cases} K(T_{\text{well}} - T), & T \leq T_{\text{well}} \\ -K(T - T_{\text{well}}), & T > T_{\text{well}} \end{cases}
\]

where \(T \) is soil temperature and \(K \) is the Heat Performance parameter that can be input.

6.5.3 Thermosyphon

A thermosyphon is a well that extracts heat from the soil when the air temperature is less than the soil temperature. The heat extracted is

\[
Q_{\text{well}} = \begin{cases} P(T - T_a), & T - T_a \geq T_{\text{threshold}} \\ 0, & \text{Otherwise} \end{cases}
\]

where: \(T \) is soil temperature, \(T_a \) is air temperature, \(T_{\text{threshold}} \) is the temperature difference required before the thermosyphon becomes active, and \(P \) is thermosyphon performance (Arctic Foundations Method) given by

\[
P = \left(A + B \left(\frac{W_w}{W_{w0}} \right)^C \right) A_{\text{rad}}
\]

where: \(A, B, \) and \(C \) are fitting parameters, determined from data, \(W_w \) is wind speed, \(W_{w0} \) is the reference wind speed (1 m/s), and \(A_{\text{rad}} \) is the surface area of the radiator.

Cauchy-Type

6.6 PARAMETERS

Wells and tunnels are controlled by three user definable parameters: Influence Distance (\(\alpha \)), Line Mesh Spacing (\(\zeta \)), and Mesh Growth Coefficient (\(\gamma \)). The influence distance controls the spread of the sink that simulates the well, and line mesh spacing and mesh growth coefficient control the mesh spacing near the well.

The well sink is controlled by the scale factor formula:
\[P = \exp\left(-\frac{|r|^2}{\alpha^2} \ln 20 \right) \] \[304\]

This is described in detail in Section 6.3.

The mesh spacing is controlled by:

\[m = \max\left\{ \zeta, |r|^{1.2} \right\} \] \[305\]

Equation [298] ensures that \(\zeta \) is the smallest element size, and causes the size to grow at a rate proportional to \(|r|^{1.2} \). The exponent of 1.2 was selected to allow the mesh to grow at a rate that is generally appropriate for models.

Figure 34 shows the sink scale factor \((P) \) for some values of influence distance, and Figure 37 shows the mesh spacing for some values of the mesh growth coefficient.

![Figure 40: Mesh spacing \((m) \) for various values of mesh growth coefficient \((\gamma) \).](image)

6.7 REMARKS

Changing the default mesh parameters in Equation [298] is only necessary if the automatically generated mesh is not suitable. The mesh may be too coarse or too fine near the well, and adjustment may be necessary to facilitate accurate and efficient modelling.

It is possible that in large models, the mesh generation will not resolve the well. The mesher may fail to resolve the peak of the sink/source, regardless of how the parameters are set. In this case, it is necessary to increase the mesh density of the model by decreasing the mesh size. It is often best to create a region that contains the well, and, if necessary, decrease the mesh size for that region only. Usually, just creating the region is enough for the mesher to resolve the well. The region mesh size will override the mesh size set by Equation [298].
When wells or tunnels are directly represented in a model as a borehole, it causes extremely dense meshing near the borehole, which must be resolved out to the model scale mesh. This can generally be accomplished; however, the resulting mesh is extremely dense close to the well, and the model runs very slow. The advantage of incorporating wells and tunnels as sinks/sources in the partial differential equation is that the mesh size is determined at the model scale. This generally gives accurate results in much less time. Equations [297] and [298] provide control of the rate of decay of the sink/source and the mesh density so that the model can be fine-tuned.

FlexPDE takes several characteristics of the geometry into consideration when generating the mesh. It is possible that the mesh size set by Equation [298] will be overridden by another size parameter. Since FlexPDE will select the smallest mesh size out of all the possible sizes under consideration, this should not cause any problems with the simulation.

For complex models, especially those for which the well or tunnel is screened across a contact between materials with a large difference in conductivities, the gradients in the immediate vicinity of the well need to be monitored to ensure they are not unrealistically large.

The *Rate* boundary condition in a two-dimensional model is a volume per unit time. When determining the appropriate rate, the user must consider that the well is being applied to a three-dimensional model with the third dimension having unit length. This means that a rate that is suitable for a three-dimensional model may be too large for a corresponding two-dimensional model.
7 NUMERICAL IMPLEMENTATION

The finite element software developed at SoilVision Systems Ltd. makes use of a generic finite element solver called FlexPDE. FlexPDE has been designed and maintained by Bob Nelson of PDE Solutions Inc. over the course of the past 31 years and is the result of many years of rigorous testing and peer review. The most detailed source of documentation of the numerical schemes used in the FlexPDE software may be found in the User's Guide and Reference Manual provided with the software. The following sections provide a brief overview of some of the more significant numerical methods used in the software.

Primary advantages of the FlexPDE finite element solver are as follows:

- Fully automatic mesh generation.
- Fully automatic mesh refinement based on any model variable.
- Fully implicit approach in the solver, which provides for a robust solution of difficult models with convergence issues.
- 3, 6, or 9-noded triangles as elements for 2D analysis and 4, 10, or 20-noded tetrahedrons in 3D elements.
- Adaptive time-stepping with automatic generation and control of time steps.
- Newton-Raphson convergence iteration schemes.
- Use matrix preconditioning in conjugate-gradient solutions. The default preconditioner is the diagonal-block inverse matrix.

7.1 EQUATION ANALYZER

A symbolic equation analyzer expands defined parameters and relations, performs spatial differentiation, and symbolically applies integration by parts to reduce second order terms to create symbolic Galerkin equations. It then differentiates these equations to form the Jacobian coupling matrix.

7.2 MESH GENERATION

A mesh generation module constructs a triangular finite element mesh over an arbitrary two-dimensional model domain. In three-dimensional models, the 2D mesh is extruded into a tetrahedral mesh covering an arbitrary number of non-planar layers in the extrusion dimension. Bilinear interpolation is used in 3D models to approximate a curved surface.

FlexPDE uses an "advancing front" mesh generation method, triangular in 2D and tetrahedral in 3D (the specific algorithm is proprietary, but similar mesh generation methods are widely reported in the literature). The mesh generator allows spatially-varying node density, in order to concentrate cells in regions of structural detail.

Based on the order of the selected analysis the following types of elements can be generated.
7.3 MESH REFINEMENT

The finite element solver used by SoilVision Systems Ltd. implements fully automatic mesh refinement. The mesh refinement may be triggered based on any model variable through a combination of the RESOLVE statement as well as the XERRLIM variable.

FlexPDE automatically adapts the computation mesh to the needs of the solution. Error estimates are formed in each cell, and cells with high error are split into two new cells, resulting in a new computation mesh and a repeat of the solution process. The reference error is user-selectable (ERRLIM). The exact algorithm is proprietary, but similar techniques are discussed in the open literature.

The error estimation process is based on the following observation. In the finite element method, each nodal value is computed by minimizing the residual of the partial differential equation, PDE, weighted by a node-specific weighting function and integrated over all cells surrounding the node. A centrally-weighted integral of the PDE residual over an individual cell provides an independent measure of the residual, and provides the error estimate.
7.4 INTERPOLATION ORDER

Finite element basis is quadratic.

7.5 TIME STEPPING

Both explicit and implicit methods have been presented in literature as viable methods of solving for nodes while moving forward in time. Explicit methods use known data to "explicitly" define each nodal value at an advanced time. Such explicit methods usually suffer in accuracy and stability unless the timestep is small. Implicit methods solve "implicitly" for self-consistent values at the advanced time (i.e., the simultaneous finite element spatial equations are solved at the advanced time). This improves the stability and accuracy for large timesteps, at the cost of a simultaneous solution for all nodes in the mesh.

Explicit methods can be more economical under the right circumstances.

The implicit generalized Gear (1971) method has been selected in SVHEAT as the most robust method for general application. The research literature supports this decision.

7.5.1 Time Integration

FlexPDE uses a selectable-order Backward Difference Formulation to advance variables in time. The default is second order, but you can select linear or cubic with the TORDER selector. Linear backward difference (torder=1) is equivalent to Backward Euler integration. All the methods are Implicit. The analysis for default quadratic integration is as follows:

Assume that each variable can be approximated as a polynomial in time,

\[U(t) = p_0(t)u_0 + p_1(t)u_1 + p_2(t)u_2 \]

where \(u_0 \) and \(u_1 \) are known values at times \(t_0 \) and \(t_1 \), \(u_2 \) is the unknown value at time \(t_2 \), and \(t_0 < t_1 < t_2 \).

The coefficients \(p_0 \), \(p_1 \) and \(p_2 \) are Lagrange Interpolation coefficients,

\[
\begin{align*}
 p_0(t) &= (t-t_1)(t-t_2) / ((t_1-t_0)(t_2-t_0)), \\
 p_1(t) &= -(t-t_0)(t-t_2) / ((t_1-t_0)(t_2-t_1)), \text{ and} \\
 p_2(t) &= (t-t_0)(t-t_1) / ((t_2-t_0)(t_2-t_1)).
\end{align*}
\]

With this interpolation, we can find the time derivative of \(U(t) \)

\[U'(t) = p_0'\ast u_0 + p_1'\ast u_1 + p_2'\ast u_2 \]

with,

\[
\begin{align*}
 p_0'(t) &= ((t-t_1)+(t-t_2)) / ((t_1-t_0)\ast(t_2-t_0)), \\
 p_1'(t) &= -((t-t_0)+(t-t_2)) / ((t_1-t_0)\ast(t_2-t_1)), \text{ and} \\
 p_2'(t) &= ((t-t_0)+(t-t_1)) / ((t_2-t_0)\ast(t_2-t_1)).
\end{align*}
\]

The time derivative at \(t_2 \) is then,
\[U'(t_2) = p_0'(t_2)u_0 + p_1'(t_2)u_1 + p_2'(t_2)u_2 \]

with,
\[
\begin{align*}
 p_0'(t_2) &= \frac{(t_2 - t_1)}{((t_1-t_0)*(t_2-t_0))}, \\
 p_1'(t_2) &= \frac{-(t_2-t_0)}{((t_1-t_0)*(t_2-t_1))}, \text{ and} \\
 p_2'(t_2) &= \frac{(2*t_2-t_1-t_0)}{((t_2-t_0)*(t_2-t_1))}.
\end{align*}
\]

Now, if we are given an equation
\[dt(U) = F(U) \]

We can write,
\[U'(t_2) = F(U(t_2)) \]
as a fully implicit equation for \(U_2 \), and
\[U_2 = \frac{[F(U_2) - p_0'(t_2)U_0 - p_1'(t_2)U_1]}{p_2'(t_2)}. \]

Solving this system requires either the solution of a linear system or a nonlinear system, depending on the form of \(F(U) \). Notice that the core of this solution method is to find a value of \(U_2 \) such that the interpolated time derivative at the end of the step matches the specified driving term \(F(U) \) at the end of the time step. There is no time-centering issue involved with \(F(U) \): it is always at the end of the step.

7.5.2 Timestep Control

The approximation described above implies a constant curvature \(U'' \) over the interval \((t_0,t_2)\). When we later advance from \(t_2 \) to \(t_3 \), we implicitly assume that \(U'' \) is constant over the interval \((t_1,t_3)\), but with a different \(U'' \) than the previous step. There has therefore been an inconsistent assumption about the value of \(U'' \) in the overlapped interval \((t_1,t_2)\).

The FlexPDE timestep control, simply stated, is to measure how much difference the two estimates of \(U'' \) imply in \(U_3 \), and to restrict this difference to the requested ERRLim.

The curvature over \((t_0,t_2)\) is:
\[
U''_1 = \frac{2*U_0/((t_1-t_0)*(t_2-t_0)) - 2*U_1/((t_1-t_0)*(t_2-t_1)) + 2*U_2/((t_1-t_0)*(t_2-t_1))}{2}
\]

The curvature over \((t_1,t_3)\) is,
\[
U''_2 = \frac{2*U_1/((t_2-t_1)*(t_3-t_1)) - 2*U_2/((t_2-t_1)*(t_3-t_2)) + 2*U_3/((t_2-t_1)*(t_3-t_2))}{2}
\]

The difference is:
\[
E''_2 = \frac{-2*U_0/((t_1-t_0)*(t_2-t_0)) + 2(t_3-t_0)U_1/((t_1-t_0)*(t_2-t_1)*(t_3-t_1)) - 2*U_2*(t_3-t_0)/((t_2-t_1)*(t_3-t_2)*(t_2-t_0)) + 2*U_3/((t_3-t_2)*(t_3-t_1))}{2}
\]

Integrating over \((t_2,t_3)\) produces an error,
\[
E_3 = \frac{-(t_3-t_2)^2*U_0/((t_1-t_0)*(t_2-t_0)) + (t_3-t_2)^2*(t_3-t_0)U_1/((t_1-t_0)*(t_2-t_1)*(t_3-t_1)) - (t_3-t_2)(t_3-t_0)U_2/((t_2-t_1)*(t_2-t_0)) + (t_3-t_2)*U_3/((t_3-t_1))}{2}
\]
The Nth power of the nodal values of E is averaged, rooted and divided by the range of the variable U. N is controlled by TNORM in version 5 and ENORM in version 6. N=2^TNORM. The range of U is the larger of the declared Threshold or the observed range of values.

\[E_{av} = \left(\sum \left(\frac{E^3}{\text{Range}(U)} \right)^N \right)^{1/N}, \text{ and} \]
\[\Delta t_4 = \Delta t_3 \sqrt{\frac{\text{TERRLIM}}{E_{av}}} \]

This process applies to variables U that are defined by an evolution equation \(dt(U) = F(U) \). Steady equations are not assumed to be polynomial in time, and a different rule is applied to generate \(E_{av} \) for these variables.

In this case,

\[E_3 = \frac{(U_3 - U_2)}{\text{Changelim}} \]

Moving nodes adds another criterion, which is that the cell volume cannot change by more than a prescribed percentage on any cycle. The way this is controlled is different in V6 than in V5.
8 REFERENCES

