Triaxial Testing of Unsaturated Agricultural Soils

Dvoralai Wulfsohn1; Bankole A. Adams1; Delwyn G. Fredlund2

1 Department of Agricultural and Bioresource Engineering, University of Saskatchewan, Saskatoon, SK, Canada; 2 Department of Civil Engineering, University of Saskatchewan, Saskatoon, SK, Canada

(Received 21 October 1996; accepted in revised form 4 December 1997)

In this paper, triaxial testing procedures and equipment as they have been applied to unsaturated soils are surveyed. Modifications to conventional triaxial apparatus and procedures for testing unsaturated soils based on principles of “unsaturated soil mechanics” are described in some detail. The modifications accommodate the independent measurement or control of pore-air and pore-water pressures and the resolution of both air and water components of volume change. This makes it possible to study the influence of soil suction on soil strength and volume change behaviour. To illustrate this approach, an agricultural soil was tested in a modified triaxial apparatus using independent stress state variables to describe stresses in the specimen. Matric suction, mean net stress and deviatoric stress were monitored or controlled in a series of constant water content tests. Volume change and shear strength behaviour were evaluated based on unsaturated soil mechanics principles. For low stress regimes, matric suction remained essentially constant under constant water content testing; however, as loading was increased matric suction varied significantly. The relevance of using matric suction as an independent stress state variable in fundamental studies of agricultural soil behaviour, as opposed to a total stress approach, is discussed.

© 1998 Silsoe Research Institute

Notation

- \(c \) total cohesion of unsaturated soil, kPa
- \(c' \) effective soil cohesion, kPa
- \(e \) void ratio
- \(K_0 \) coefficient of earth pressure at rest
- \(L/D \) length to diameter ratio for triaxial specimens
- \(S_r \) degree of saturation, %
- \(u_a \) pore-air pressure, kPa
- \(u_w \) pore-water pressure, kPa
- \(u_a - u_w \) Matric suction, kPa
- \(\Delta V_a \) specimen air volume change, ml
- \(\Delta V_w \) specimen water volume change, ml
- \(w \) gravimetric water content, %
- \(\zeta \) soil parameter in Bishop’s effective stress equation for unsaturated soil
- \(\phi' \) soil angle of internal friction, deg
- \(\rho \) soil wet bulk density, Mg/m\(^3\)
- \(\sigma \) total stress, kPa
- \(\sigma - u_a \) net stress, kPa
- \(\sigma' \) effective stress \((\sigma - u_a)\), kPa
- \(\sigma_1 \) axial stress, kPa
- \(\sigma_3 \) radial stress, kPa

1. Introduction

The most widely used laboratory equipment for investigating the strength and deformation behaviour of soils is the triaxial apparatus. The apparatus is versatile and can be used for the measurement of many parameters, including shear strength characteristics, consolidation characteristics and the permeability of soil. Its key features include facilities for the control of the magnitude (but not direction) of the principal stresses, the control of drainage, and the measurement of pore pressures. With a suitable control system, modern triaxial cells provide the ability to perform stress path tests (i.e. time-varying functions of stress or strain) while precisely controlling or measuring pore fluid pressures, volume change, axial forces and deformation. These capabilities are key to the derivation of constitutive models for soils such as those based upon critical state concepts, and to improving our fundamental understanding of soil behaviour.

The conventional triaxial apparatus is designed to measure and control stress and strain related variables for saturated soils. A review of the agricultural soils literature shows that few modifications in equipment and
procedures have been implemented when testing unsaturated soils. Pore-water pressures are widely assumed to remain constant under undrained loading conditions, and therefore data has been analysed in terms of total stresses. Over the last 30 years, significant developments have been made for laboratory testing and analysis of unsaturated soils. Modifications for testing unsaturated soils take into account the nature of stresses and strains in an unsaturated granular medium.

1.1. Stress state variables for unsaturated soils

Unsaturated soils are characterized by the presence of an air phase, a water phase and an air-water interface in the voids. Because of this, it has been difficult to describe an appropriate stress state variable for unsaturated agricultural soils. For a saturated soil both the strength and volume change behaviour are governed by the effective stress

\[\sigma' = \sigma - u_w \]

where \(\sigma \) is the total stress (kPa), \(\sigma' \) the effective stress (kPa) and \(u_w \) the pore-water pressure (kPa).

Since different pressures can exist in the air and the water phases of an unsaturated soil, this simple idea of effective stress does not apply. In 1959, Bishop proposed an effective stress relationship for unsaturated soils. The proposed equation introduced a soil parameter, \(\chi \), as a stress partitioning factor. At saturation, with water as the pore fluid, \(\chi \) was equal to 1 and the expression reduced to Terzaghi’s effective stress [Eqn (1)]. Jennings and Burland and Burland showed that effective stress for unsaturated soils was unable to fully explain the mechanical behaviour of unsaturated soils. The soil parameter, \(\chi \), was difficult to evaluate and was different when determined for shear strength and for volume change.

Fredlund and Morgenstern reconsidered an unsaturated soil as a four-phase system. They call the fourth phase, representing the air–water interface, the contractile skin. On the basis of multiphase continuum mechanics they showed that the total stress \(\sigma \), pore-air pressure \(u_a \), and pore-water pressure \(u_w \) must be combined in two independent stress parameters. The two stress state variables most often selected for practical engineering analysis are the net stress: \((\sigma - u_a) \), and the matric suction: \((u_a - u_w) \). The stress state variables separate the effect due to changes in normal stress from the effect due to change in pore-water pressure. Matric suction is considered here as an independent stress variable and, therefore, the need for a single-valued effective stress equation for unsaturated soil is eliminated. This framework for an “unsaturated soil mechanics” is becoming widely accepted in the engineering research community as is evident by the many recent papers dealing with the mechanics of unsaturated soils (e.g. see Refs 12–17).

In general, it can be assumed that for agricultural conditions, the air in the pore spaces join up and ultimately interconnect with the atmosphere. Under these conditions, \(u_a \) is equal to 0 kPa (gauge) and the two stress variables, net stress and matric suction, become total stress \(\sigma \) and tension in the pore water, \(u_w \), respectively.

2. Triaxial testing of unsaturated soils

Triaxial equipment and testing procedures have been described in detail by Bishop and Henkel and Head for saturated soils and by Fredlund and Rahardjo for unsaturated soils. The triaxial test is performed on a cylindrical soil specimen subjected to an all round confining pressure usually applied by pressurizing a water-filled cell. Axial stress can be applied to the specimen through a loading rod, typically in contact with the top of the specimen. In saturated soil testing, the soil specimen is enclosed in a rubber membrane and its ends placed between porous caps with drainage ducts to allow movement of water from the sample. The change in volume of the sample is given by the volume of water expelled from the sample. Modern triaxial testing for unsaturated soils accommodates the independent measurement and control of pore-air, pore-water pressures and volume changes with provision for control and measurement of matric suction. Modifications to procedures employed during the testing of unsaturated soils are highlighted below.

2.1. Specimen preparation

Triaxial tests may be performed on undisturbed field samples or on remoulded specimens prepared in the laboratory. Although undisturbed specimens provide better representation of field conditions than remoulded specimens, they can be difficult to obtain. Undisturbed field samples shrink when soil moisture is lost, and difficulties may be experienced with stones, vegetative cover and non-homogeneity in the soil. During triaxial testing of undisturbed specimens, the likelihood of generating uneven stress distributions and pore pressures within the soil is therefore greater. Thus, for fundamental, theoretically based investigations into the nature of soil behaviour, remoulded specimens are generally used. Nevertheless, since it is practically impossible to reproduce “natural” structures using remoulded specimens, undisturbed specimens should be used when comparing model predictions with field data or when evaluating the natural variability of soil properties.
Remoulded specimens are prepared by compacting a soil sample to desired water content and bulk density specifications in a mould. The compaction process may be static (using a piston), impact (using a hammer) or kneading (in which the soil is loaded using a tamper, and can undergo extensive shearing strains) depending on the object of the test, soil type and desired initial structure. If strength is the primary object of the test, a flocculated structure can be achieved by static compaction methods. If plasticity or flexibility is required, a dispersed structure can be achieved by a kneading compaction on the wet side of the optimal water content for compaction.\(^\text{19}\)

In using remoulded specimens, only specimens with identical structures should be used to determine unique shear strength parameters for the soil, i.e. specimens with the same texture and stress history. If they do not have the same structure, they may produce different shear strength parameters. Thus, specimens must be compacted at the same initial water content and bulk density to represent an “identical soil”.

Triaxial specimens are usually prepared at-length-to-diameter ratios \((L/D)\) of between 1.5 and 2 in order to minimize end effects due to the end platens of the apparatus and to reduce the likelihood of buckling during testing.\(^\text{20,21}\) Data presented by Grisso et al.\(^\text{22}\) for triaxial specimens of an agricultural soil with \(L/D\) ratios of 1, 1.5 and 2, indicated that the \(L/D\) ratio had little effect on hydrostatic compaction of these specimens.

2.2. Pore-water pressure control or measurement

Unsaturated soils are characterized by negative pore-water pressures, i.e. \(u_w < 0\). Pore-water pressure in an unsaturated specimen is usually measured or controlled through a saturated fine ceramic disk integrated with a base pedestal connected to the measuring system water compartment.\(^\text{10}\) The matric suction in the specimen \((u_a - u_w)\) must not exceed the air entry value of the disk (i.e. the minimum matric suction at which air can pass through the disk), or air will enter the water compartment which will become filled with air bubbles and no longer maintain continuity between the pore-water and the water in the measuring system.\(^\text{10,23}\) Another limitation to the measurement of pore-water pressure of unsaturated soils with large negative pore-water pressures is that water cavitates as a gauge pressure of \(-101\) kPa is approached. As a result, air bubbles will accumulate in the water compartment below the disk leading to erroneous readings (Fig. 1a). The limitation to the measurement or control of pore-water pressures in unsaturated soils with high matric suction can be overcome using the axis-translation technique (see below).

![Fig. 1. Measurement of pore-water pressures in an unsaturated soil specimen (after Fredlund and Rahardjo\(^\text{10}\)). (a) Direct measurement of negative pore-water pressure showing air diffusion through the high air entry disk and water cavitation in the measuring system; (b) axis translation of 101 kPa](image)

2.3. Axis-translation technique

In this procedure, the pore-air pressure is elevated above atmospheric pressure (i.e. to an artificial atmosphere) such that pore-water pressure becomes positive, yet the same matric suction relative to the artificial atmosphere is maintained in the soil sample.\(^\text{10,24,25}\) The application of the axis-translation technique is illustrated in Fig. 1b for a soil specimen with a matric suction of 101 kPa. The pore pressure is measured below the saturated ceramic disk (high air entry disk) which has an air entry value of 202 kPa. In the example shown, an air pressure of 202 kPa is applied to the specimen to raise the pore-air pressure by 202 kPa, which in turn increases the
pore-water pressure by the same amount to a positive value of 101 kPa. The pore-water pressure can now be measured since there is no risk of cavitation in the measuring system and continuity between the pore-water and the water in the measuring system is maintained. Note that it is still possible for air to diffuse into the water, and a system for flushing the water compartment is needed. Use of the axis-translation technique does not appear to affect the measured shear strength of unsaturated soils.

2.4. Pore-air pressure control or measurement

Even under conditions where the pore-air remains atmospheric in agricultural soils, it is necessary to control pore-air pressure when implementing the axis-translation technique. The control or measurement of pore-air pressure is conducted through a coarse corundum disk placed on top of the specimen which provides continuity between the air voids and the pressure control system. The porous disk has a low air entry value to prevent water from entering into the control or measuring system. Pore-air pressure can be measured using a pressure transducer. Because of the high compressibility of air, the volume of the pore-air pressure measuring system should be kept to a minimum to obtain accurate measurements.

2.5. Volume change measurement

In an unsaturated specimen, the total volume change during compression is equal to the sum of the air and water components of volume change. Agricultural engineers frequently perform testing under constant gravimetric water content conditions, so that the total volume change is due to air expelled from the specimen. The measurement of air-volume change is difficult because of the high compressibility of air, its sensitivity to temperature change, and the tendency for air to diffuse through the porous membrane.

Because of the difficulty in measuring air-volume change, many arrangements measure the overall volume change and the pore-water-volume change and then calculate air-volume change by the difference between the two. Measurement of the water component of volume change is relatively straightforward and is commonly done using a conventional twin burette volume change indicator. The measurement of overall volume change, on the other hand, is more difficult. Arrangements for overall volume change measurement have involved the use of mercury, double-walled triaxial cells, optical transducers or non-contacting Hall effect transducers located around the specimen. The latter method is not suitable if large deformations and radial bulging take place, e.g. for agricultural soils under deviatoric loading.

Bishop and Henkel and Matyas used two burettes to measure air-volume change under atmospheric conditions. This arrangement, although it has its merits, is cumbersome and limited to measurements at atmospheric conditions. Dunlap and Weber described a volumeter for measuring air-volume change in triaxial testing. The volumeter was submerged into a water bath to promote constant temperature conditions. This design is also used in the NSDL/Auburn University triaxial arrangement. Adams used a digitally controlled hydraulic actuator for measurement of air-volume changes.

Hettiaratchi et al. described a constant cell volume triaxial apparatus for evaluating critical state parameters of agricultural soils under constant water content conditions. They modified the deviatoric loading system such that any volume change within the cell jacket was entirely due to changes in the volume of the soil specimen and the compliance of the cell. They used the pressure-volume characteristics of the system to determine specimen volume change from system pressure changes. They proposed the addition of a variable compliance unit to facilitate a wide range of controlled state path tests.

2.6. Matric suction control

Before setting up a triaxial specimen, it is important to measure, estimate or impose the initial matric suction. Petersen brought specimens to the desired suction using a sand table and ceramic plates. Cui and Delage proposed the addition of a variable compliance unit to promote constant temperature conditions. This design is also used in the NSDL/Auburn University triaxial arrangement. Adams used two burettes or non-contacting Hall effect transducers or non-contacting Hall effect transducers located around the specimen. The latter method is not suitable if large deformations and radial bulging take place, e.g. for agricultural soils under deviatoric loading.

Bishop and Henkel and Matyas used two burettes to measure air-volume change under atmospheric conditions. This arrangement, although it has its merits, is cumbersome and limited to measurements at atmospheric conditions. Dunlap and Weber described a volumeter for measuring air-volume change in triaxial testing. The volumeter was submerged into a water bath to promote constant temperature conditions. This design is also used in the NSDL/Auburn University triaxial arrangement. Adams used a digitally controlled hydraulic actuator for measurement of air-volume changes.

Hettiaratchi et al. described a constant cell volume triaxial apparatus for evaluating critical state parameters of agricultural soils under constant water content conditions. They modified the deviatoric loading system such that any volume change within the cell jacket was entirely due to changes in the volume of the soil specimen and the compliance of the cell. They used the pressure-volume characteristics of the system to determine specimen volume change from system pressure changes. They proposed the addition of a variable compliance unit to facilitate a wide range of controlled state path tests.
2.7. Air diffusion and leakage

The measurement of pore-air pressures and volume change is complicated by the trend of air to diffuse into the pore-water and through the rubber membrane. Bishop and Donald used mercury as the cell fluid to prevent diffusion of pore-air through the rubber membrane. They observed a significant reduction in pore-air pressure due to diffusion when water was used as the cell fluid. Caution must be exercised in using mercury columns to apply lateral pressures, particularly if high pressures are applied to the pore-air in the specimen. Dunn showed that diffusion through the pore-water and membrane was greatly reduced when the sample was enclosed in two rubber membranes with two slotted aluminium sheets separated by a layer of silicon grease between the membranes. The aluminium sheets were slotted vertically so that they would not add strength to the soil sample. Komornik et al. used rubber membranes soaked in silicon oil to prevent leakage of air or water through the specimen; however, silicon oil causes rapid deterioration of the rubber membrane, such that it cannot be reused.

2.8. Constant water content shear test

The constant (gravimetric) water content triaxial test is of particular relevance to agricultural engineers who are generally interested in dynamic loading of soils by agricultural equipment, i.e., undrained pore-water conditions. The constant water content test generally consists of two stages: a compression test followed by a shearing test. The specimen is consolidated under isotropic conditions at a fixed confining pressure \(\sigma_3 \), while the pore-air \((u_a) \) and pore-water pressures \((u_w) \) are controlled. When equilibrium is reached at the end of consolidation, the soil specimen has a net confining pressure \((\sigma_3 - u_a) \) and matric suction \((u_a - u_w) \). The specimen is then sheared, with drained pore-air phase and undrained pore-water phase, by increasing the deviatoric stress \((\sigma_1 - \sigma_3) \) until the specimen fails. During shear the same pore-air pressure is maintained as that applied during the consolidation process. The pore-water pressure, however, changes during shear under undrained conditions. Thus, the net confining pressure remains constant throughout the tests, whereas the matric suction may vary.

2.9. Strain rates for triaxial testing

In the determination of fundamental soil parameters and the investigation of soil behaviour, the triaxial specimen is assumed to represent an “element” of soil. Furthermore, most constitutive models assume that soil is a homogeneous material. Thus, loading rates are usually applied to triaxial specimens in such a manner that the applied stress is propagated through the soil as uniformly as possible. Loading rates should also permit adequate time for drainage of pore fluid or equalization of pore pressures. If the loading rate exceeds some critical value, compressive strength can be significantly affected. Tensile strength is, however, not significantly affected by loading rate. In constitutive models, fundamental soil parameters are presumed to remain unchanged with rate of loading and must be measured under slow testing conditions. Rate effects are then superimposed upon static strength functions.

Niyampa et al. measured axial stress at the lower and upper parts of sandy loam triaxial specimens and observed significant differences in readings from the two locations when loading speed was increased. They also showed that loading rate increased strength up to a maximum value after which further increases in rate resulted in reduced strength. Hanson et al. reported linear increases in shear strength with shear rate, while Flenniken et al. observed that an increase in shear strength with rate did not occur at a strain rate below \(10 \text{s}^{-1} \). Dechao and Yusu observed that increases in soil shear strength, with decreases in water content (or increases in matric suction) or with increases in bulk density, are intensified by the rise in shear rate.

3. A triaxial testing apparatus for unsaturated soils

The following describes the triaxial apparatus used in the Department of Agricultural and Bioresource Engineering at the University of Saskatchewan, Saskatoon, for the testing of unsaturated agricultural soils.

3.1. System layout

The system arrangement is shown in Fig. 2. The system includes a cabinet mounted triaxial cell, a digital pressure–volume controller, plumbing arrangements, data acquisition system and host computer. The system is capable of computer-controlled stress or strain rate testing and can produce real-time graphical outputs.
unsaturated soil testing by installing an additional port (c) to accommodate a pore-air pressure line (Fig. 3). A constant cell pressure up to 800 kPa is supplied by a compressor through port d. Pore-water pressure is measured by a pressure transducer through port b. This port connects to the base plate and can also be used periodically to flush both the porous stone and the water compartment below the disk. Pore-water-volume change measurement is conducted through port a. The pore-air line c is connected to the top cap via a small-bore polythene tube. Pore-air pressure control and volume change measurements are made through the pore-air line using a digital pressure–volume controller, described below.

The cell can accommodate 38, 50, 70 and 100 mm diameter test specimens using interchangeable base pedestals and triaxial extension top caps. A 70 mm base pedestal was re-designed in this study to accommodate a grooved water compartment below the disk (Fig. 4).

High air entry ceramic disks (Soilmoisture Equipment...
3.3. Digital controller

The digital pressure–volume controller is a microcomputer controlled hydraulic actuator for the precise regulation and measurement of liquid pressure and volume change. The results of tests to evaluate the controller for measurement of air volume changes were reported by Adams et al. By taking precautions such as maintaining essentially isothermal conditions, preventing leakage at connecting points, pre-compressing the confined air space, and minimizing the total volume of the air-confined space, the controller was found to be a suitable device for measuring air-volume changes. The time response of the controller (12 ml/min air-volume change) is acceptable for slow strain rate testing of soils. The controller also permits implementation of the axis-translational technique, making it a versatile device for general unsaturated soil testing, e.g. it can be integrated with the pressure-plate apparatus for precise determination of the soil-water characteristic.

3.4. Software

The triaxial testing system is computer controlled by a BASIC (HTBasic, TransEra Corporation, Provo, Utah) programme MINIDYN. With the physical modification of the system, the programme was modified and named MINIDYN2. The modified software allows the monitoring of parameters associated with unsaturated soil testing including suction measurement and control. A new subroutine was also added to control and measure air-volume changes during isotropic compression.

3.5. Future enhancements to the testing system

Under the current configuration, the apparatus is equipped with a single digital pressure–volume controller, which is dedicated to air-volume change measurement, while constant cell pressures up to 800 kPa are supplied by a compressor. In future enhancements, an additional digital controller will be used to supply constant cell pressures up to 1.7 MPa (the specified capacity of the cell), or, using the control software, to provide various cell pressure stress paths. Equipped with two controllers, the system has the capability of performing K_0 consolidation tests (i.e. consolidation in which there is no lateral deformation of the sample), which better simulate the in situ consolidation process. If the second controller is used instead for pore-water pressure control, the precise control and measurement of matric suction is also possible. To perform dynamic stress path tests, a high-speed controller is required.

4. Evaluation of unsaturated triaxial testing procedures

A sandy clay loam soil (48.1% sand, 28.3% clay and 23.6% silt) was air-dried and passed through a US. Standard sieve series 10 (2 mm opening). A batch sample was produced by spraying the soil with fine droplets of water until the desired water content (20%) was attained. The optimum compaction water content for this soil is 18.3%. Cylindrical specimens of 70 mm diameter (D) × 140 mm length (L) were formed by compacting the sample in five uniform layers in a specially designed mould. The approximate bulk density, degree of saturation and matric suction of the resulting specimens were 1.2 Mg/m3, 32% and 50 kPa, respectively.

In a typical test, the specimen was placed on the saturated ceramic disk mounted on the base pedestal. It was then sealed onto the pedestal by a composite membrane (slotted aluminium foil sandwiched between two latex membranes). The cell was set in place and filled with water. Cell pressure and air backpressure were simultaneously increased to prevent premature consolidation or compression of the specimen. Continuity of pore-air space with the pore-air pressure and air volume change measurement devices was ensured by backpressuring air through the coarse disk sealed to the top of the specimen. An air backpressure of 50 kPa was chosen (using the
axis-translation technique) such that the negative pore-water pressure in the specimen was elevated to about 0 kPa (gauge). Continuity of the water phase between the specimen and pore-water pressure measurement system was ensured by the axis-translation technique and the saturated ceramic disk on the pedestal. The specimen at this stage had a net confining stress of \((\sigma_3 - u_a)\) equal to 0 kPa and matric suction \((u_a - u_w)\) of 50 kPa.

Once the initial conditions were set, the compression or consolidation stage was initiated by elevating \(\sigma_3\) above \(u_a\) to give a desired net confining stress \((\sigma_3 - u_a)\). During consolidation, specimens were held at a matric suction of 50 kPa and net confining pressures between 1.5 and 60 kPa.

Shearing during the constant water content tests was performed at a strain rate of 10 mm/h. This rate was considered to be quasi-static; it is much slower than rates the soil is expected to undergo under agricultural field operations, yet faster than rates used in static tests. As discussed in Section 2.9, static testing rates are necessary to allow excess pore-water pressures to dissipate through the specimen. The use of quasi-static rates should not introduce great error because of the undrained pore-water conditions and the low degree of saturation of the test specimens. The pore-air pressure was maintained at 50 kPa, throughout the shearing process.

5. Results

5.1. Isotropic compression

Table 1 gives the states of nine specimens after isotropic compression under initial net confining stresses \((\sigma_3 - u_a)\) ranging between 0 and 250 kPa, and a matric suction \((u_a - u_w)\) of around 50 kPa. All specimens were initially in loose states as shown in the first row of values.

Pore-air-volume changes \((\Delta V_a)\) accounted for nearly all the total volume change (95–100%) in the specimens during isotropic compression. Significant changes in the soil pore space were produced by the isotropic compression of the specimens as evident by the changes in void ratio \((e)\), bulk density \((\rho)\), and degree of saturation \((S_r)\). These results are associated with the initial loose state and low degree of saturation of the specimens.

5.2. Constant water content tests

Figure 5 shows deviatoric stress–strain relationships for seven constant water content tests conducted under net confining pressures from 1.5 to 60 kPa. A typical three-stage pattern was observed for the changes in deviatoric stress with axial strain. A rapid rise in deviatoric stress over a short axial strain range was quickly followed by a fairly wide range of constant rate of change in deviatoric stress with axial strain. These transition stages indicate the progressive mobilization of shear strength of the specimens. The third stage shows a greatly reduced, almost steady, change in deviatoric stress with axial strain. Most of the specimens approached failure states at around 40% axial strain. Volume changes due to the expulsion of air during the shearing stage ranged between 20 and 25% for six of the specimens at failure (Fig. 6).

Figure 7 shows the failure envelope for the series of constant water content tests. The envelope was drawn approximately tangentially to five Mohr circles constructed from the data. It should be noted that these specimens failed at similar values of matric suction. Based on this series of tests, the soil has a total cohesion \(c \approx 20\) kPa and an internal angle of friction \(\phi = 35^\circ\). Note that the total cohesion can be approximated by \(c \approx c' + (u_a - u_w)\tan\phi'\), where \(c'\) and \(\phi'\) are the effective strength parameters.\(^{10,17}\)

<table>
<thead>
<tr>
<th>Test</th>
<th>(\sigma_3 - u_a) kPa</th>
<th>(u_a - u_w) kPa</th>
<th>(\Delta V_a) ml</th>
<th>(\Delta V_w) ml</th>
<th>(w) %</th>
<th>(e)</th>
<th>(S_r) %</th>
<th>(\rho) Mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial state</td>
<td>0</td>
<td>50.0</td>
<td>0</td>
<td>0</td>
<td>20.1</td>
<td>165</td>
<td>32.3</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>50.8</td>
<td>0.0</td>
<td>0.0</td>
<td>20.2</td>
<td>1.65</td>
<td>32.5</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>8.7</td>
<td>49.9</td>
<td>– 16.1</td>
<td>– 0.0</td>
<td>20.3</td>
<td>1.57</td>
<td>34.2</td>
<td>1.24</td>
</tr>
<tr>
<td>3</td>
<td>18.8</td>
<td>49.9</td>
<td>– 29.9</td>
<td>– 0.0</td>
<td>20.2</td>
<td>1.50</td>
<td>35.6</td>
<td>1.27</td>
</tr>
<tr>
<td>4</td>
<td>29.5</td>
<td>49.1</td>
<td>– 57.2</td>
<td>– 0.2</td>
<td>20.1</td>
<td>1.37</td>
<td>38.9</td>
<td>1.34</td>
</tr>
<tr>
<td>5</td>
<td>37.6</td>
<td>49.4</td>
<td>– 80.4</td>
<td>– 0.2</td>
<td>20.1</td>
<td>1.25</td>
<td>42.4</td>
<td>1.41</td>
</tr>
<tr>
<td>6</td>
<td>48.0</td>
<td>51.0</td>
<td>– 88.7</td>
<td>– 0.3</td>
<td>20.0</td>
<td>1.21</td>
<td>43.9</td>
<td>1.44</td>
</tr>
<tr>
<td>7</td>
<td>60.4</td>
<td>50.4</td>
<td>– 101.4</td>
<td>– 0.3</td>
<td>20.0</td>
<td>1.15</td>
<td>46.3</td>
<td>1.48</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>50.8</td>
<td>– 135.2</td>
<td>– 4.1</td>
<td>19.7</td>
<td>0.98</td>
<td>53.3</td>
<td>1.60</td>
</tr>
<tr>
<td>9</td>
<td>250</td>
<td>50.6</td>
<td>– 162.0</td>
<td>– 7.9</td>
<td>19.0</td>
<td>0.83</td>
<td>60.7</td>
<td>1.72</td>
</tr>
</tbody>
</table>
In the constant water content tests (under lower net confinement), pore-water pressure changes between 2 and 8 kPa were measured at the end of shearing compared with an initial value of 0 kPa. With the air pressure u_a maintained at 50 kPa, the matric suction ($u_m - u_a$) varied between 42 and 48 kPa (Fig. 8 and Table 2),

Fig. 5. Variation of deviatoric stress with axial strain for constant water content tests under low confinement pressures

Fig. 6. Variation of volumetric strain with axial strain for constant water content tests under low confinement pressures
Fig. 7. Mohr–Coulomb failure envelope constructed from a series of constant water content tests (w = 20%), yielding a total soil cohesion of 20 kPa and an internal friction angle of 35°.

i.e. within 4–16% from the initial value of 50 kPa. For specimens confined at 48 and 60 kPa, a steady decrease of matric suction with axial strain can be observed.

Variation of deviatoric stress and volumetric strains with axial strain for two constant water content tests conducted under net confining pressures of 150 and 250 kPa were similar to those observed for the specimens under lower net confinement pressures. A different trend was observed in pore-water pressure change and, therefore, matric suction change. Figure 9 shows that the pore-water pressure increased considerably from the initial values of 0 kPa (i.e. $u_\alpha - u_m = 50$ kPa) to 50 kPa (i.e. $u_\alpha - u_m = 0$) and beyond in two triaxial specimens under net confinement of 150 and 250 kPa. Thus, positive pore-water pressures with respect to the artificial atmosphere were generated, as indicated in the figure. Technically, zero matric suction implies saturation and the development of positive pore-water pressures are usually associated with saturated soils, yet these latter specimens

![Diagram of Mohr-Coulomb failure envelope](image)

![Diagram of Matric suction versus axial strain](image)

Table 2

<table>
<thead>
<tr>
<th>Test</th>
<th>$\sigma_2 - u_\alpha$ kPa</th>
<th>$\sigma_1 - u_\alpha$ kPa</th>
<th>$u_\alpha - u_m$ kPa</th>
<th>ΔV_w ml</th>
<th>e</th>
<th>S_γ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>20.6</td>
<td>50.5</td>
<td>0</td>
<td>1.65</td>
<td>32.5</td>
</tr>
<tr>
<td>2</td>
<td>8.9</td>
<td>102.7</td>
<td>54.7</td>
<td>-127.7</td>
<td>0.98</td>
<td>56.5</td>
</tr>
<tr>
<td>3</td>
<td>18.9</td>
<td>138.3</td>
<td>47.7</td>
<td>-115.5</td>
<td>0.93</td>
<td>56.0</td>
</tr>
<tr>
<td>4</td>
<td>29.2</td>
<td>190.7</td>
<td>52.4</td>
<td>-111.3</td>
<td>0.82</td>
<td>63.5</td>
</tr>
<tr>
<td>5</td>
<td>37.8</td>
<td>208.0</td>
<td>44.4</td>
<td>-107.8</td>
<td>0.72</td>
<td>72.3</td>
</tr>
<tr>
<td>6</td>
<td>48.0</td>
<td>237.6</td>
<td>43.3</td>
<td>-99.3</td>
<td>0.71</td>
<td>75.3</td>
</tr>
<tr>
<td>7</td>
<td>60.6</td>
<td>296.6</td>
<td>43.6</td>
<td>-93.8</td>
<td>0.69</td>
<td>76.2</td>
</tr>
<tr>
<td>8</td>
<td>149</td>
<td>416.9</td>
<td>+50*</td>
<td>-29.3</td>
<td>0.87</td>
<td>60.0</td>
</tr>
<tr>
<td>9</td>
<td>249</td>
<td>603.0</td>
<td>+233*</td>
<td>-4.5</td>
<td>0.80</td>
<td>62.7</td>
</tr>
</tbody>
</table>

* Development of positive pore-water pressures.
had attained degrees of saturation of only 60 and 63%, respectively (Table 2).

6. Discussion

6.1. Volume change

Agricultural soils generally have low to moderate degrees of saturation (or water contents), are under low net confinement stresses, and undergo large deformations during loading. Under these conditions, air-volume changes in triaxial tests account for most of the total volume change, and water-volume changes might be neglected if errors of the order of 5% are acceptable. Since the measurement of air-volume changes is very sensitive to temperature changes, adequate precautions must be taken to ensure isothermal conditions during testing.

During the constant water content shearing tests, there was a tendency for reduced volume changes under higher net confining pressures (Fig. 6). This trend was also observed by Herkal et al.\(^{53}\) and Adams et al.\(^{27}\) This is largely attributed to the fact that higher net stresses caused a greater reduction of the pore spaces (i.e. compaction) during the preceding isotropic compression stage. An explanation in terms of soil structure is that more closely packed particles result in reduced interconnections between pore spaces as well as reduced porosity. Under these conditions, pore-air and water may become entrapped and less air will be expelled. Close particle packing also gives specimens more resistance to external stress, particularly for frictional soils.

An implication of pore-air becoming entrapped in the specimen is that it may be difficult to measure volume changes during the shearing stage under high net confining pressures.

6.2. Variation of matric suction

Because changes in matric suction during constant water content tests under low net confinements, are not significant, the assumption that matric suction remains constant during triaxial tests under low confining stresses will not introduce much error and simplifies the testing procedure considerably. This simplifies the application of constitutive models to practical agricultural soil mechanics problems, but will apply only to conditions involving low net confinement and a low degree of saturation.
The variation in matric suction for specimens under higher net confinement pressures was markedly different than that for the specimens under lower confinements. There appears to be a stress range and transition point beyond which constant suction assumptions will not hold. This transition point will be at some stress level directly related to the matric suction, and thus indirectly to the water content, of the specimen. The soil-water characteristic curve can be considered as a constitutive relation; it relates matric suction (a stress state variable) to the water content (a deformation state variable). We propose that the transition between "low" and "high" stresses is approximately equal to the as-compact matric suction of the soil (i.e. 50 kPa for this soil) and that estimates over a range of water contents can be obtained from the soil-water characteristic curve for a particular soil structure. In other words, the as-compact matric suction is considered to be a stress history variable analogous to the pre-compression stress for e – σ1 loading paths. Triaxial shearing tests conducted under consolidation pressures above this transition value will involve changes in matric suction, which will in turn affect the soil response (a correction factor would probably be required for swelling soils).

It has been observed in various studies that significant variations in soil properties for specimens under low suction (high water content) and/or high confinement pressures, may be attributed to the build up of pore-water pressures within specimens (see Refs. 54,55, and 17). Under such conditions, the variation of matric suction must also be accounted for in constitutive models, as the use of a total stress analysis may introduce considerable errors.

Applying this scenario to field situations, matric suction will change significantly as a result of some agricultural operations even under constant water content conditions, for example, high axle loads causing severe compaction. This has important implications with respect to water availability for plant growth and soil strength.

7. Conclusions

In the development of constitutive models for unsaturated agricultural soils, it has generally been assumed that stresses can be described using total stresses, and that matric suction remains constant under the undrained (constant water content) conditions existing under field operations. Laboratory testing equipment and procedures, such as the triaxial test, have reflected this. Over the last few decades, modifications to the conventional triaxial apparatus and instrumentation for unsaturated soils have been developed, making it possible to monitor and control both pore-air and pore-water phases of a test specimen, and thereby examine the influence of matric suction on unsaturated soil behaviour. For soils having a low degree of saturation and under a low stress regime, the matric suction will remain fairly constant under undrained conditions. Under such conditions, a total stress analysis will provide reasonable approximations of soil behaviour. The imposition of large stresses on the same soil may cause significant changes in matric suction and in turn affect the strength and volume change behaviour. Under such conditions the use of a total stress analysis may introduce considerable errors. It is then important to monitor matric suction changes in triaxial tests.

The combination of water content and matric suction defining the transition between these two types of behaviour is provided by the initial state (i.e. stress history) of the soil. For the soil tested in this study with an initial degree of saturation of 32%, the transition stress was estimated to be about 50 kPa.

The use of independent stress state variables, as opposed to total stresses, to describe the behaviour of unsaturated agricultural soil is relevant and can be implemented in laboratory tests. To accomplish this, modifications to the conventional triaxial cell are required.

Acknowledgements

This work was supported by a grant from the Natural Sciences and Engineering Research Council (Canada).

References

7. Jennings J E; Burland J B Limitations to the use of effective stresses in partly saturated soils. Géotechnique, 1962, 2, 125–144

Escario V; Juca J F T; Coppe M S Strength and deformation of partly saturated soils. Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering held in Rio de Janeiro, Brazil, 43–46, August 1989

Alonso E E; Gens A; Josa A A constitutive model for partially saturated soils. Géotechnique 1990, 40(3), 405–430

Lee K I; Haley S C Strength of compacted clay at high pressure. ASCE Journal of Soil Mechanics and Foundation Engineering Division, 1968, 94(SM6), 1303–1331

Grasso R D; Johnson C E; Bailey A C; Nichols T A Influences of soil sample geometry on hydrostatic compaction. Transactions of the ASAE, 1984, 27(6), 1650–1653

Adams B A; Wulfsohn D; Fredlund D G Air volume change measurement in unsaturated soil testing using a digital pressure-volume-controller. ASTM Geotechnical Testing Journal, 1996, GTJODJ-19(1), 12–21

Bailey A C; Johnson C E; Schafer R L Hydrostatic compaction of agricultural soils. Transactions of the ASAE, 1984, 27, 952–955

Cui Y J; Delage P Yielding and plastic behaviour of an unsaturated compacted silt. Géotechnique, 1996, 46(2), 291–311

46 Niyama T; Namikawa K; Salokhe V M Soil failure under undrained quasi static and high speed triaxial compression. Journal of Terramechanics, 1992, 29(2), 195–205
47 Hanson T L; Johnson H P; Young D F Dynamic shear resistance of soils. Transactions of the ASAE, 1967, 10(4), 439–443
55 O'Sullivan M F; Campbell D J; Hettiaratchi D R P Critical state parameters derived from constant cell volume triaxial tests. European Journal of Soil Science, 1994, 45, 249–256